

Train Scheduling and C-DAS

Bruno Lambla – TTG Transportation technology Peter Pudney – University of South Australia

Copyright © 2015, TTG Transportation Technology Note that this presentation includes existing and planned product functionality which may change through time. Please contact TTG for latest product specifications.

SOA

Hardware

design

Train schedules and DAS

Include slack in schedules

Meeting the timetable

Distributing the slack

UE Month

20

-

15per

Santan .

and a subscription

NET

Barn 10 35

BURNARY CARLOS

40

45

and as the set of

1) Balan

Trans

 Shiften

IS propert

Martin 50

Local scheduling

Junction Scheduling

updates	trains	delayed	% delayed	Jeffreys interval
no updates	198	12	6.1%	[3.4%, 10%]
with updates	315	5	1.6%	[0.6%, 3.4%]

number of non-delayed trains	
number of delayed trains	
mean traversal time of all trains	
mean traversal time of non-delayed trains	
potential time saving (per train)	
potential time saving (per day)	

- 818 69%
- 366 31%
- 214 seconds
- 161 seconds
 - 53 seconds per train
 - 25 minutes per day

time (seconds)

> DAS allows train schedules to be executed precisely.

- We can use data from DAS to calculate robust train schedules that also consider energy use.
- Signaling is for safety, not for pacing trains. Local rescheduling can pace trains to ensure smooth flow of trains through junctions.