Energy-efficient timetabling at NS

Gerben Scheepmaker NS, Departement of Performance management and Innovation (π)

UIC Energy-efficient timetable planning, Brussels, Belgium

February 20, 2018

Content

- Introduction
- Project DINT
- Project running times
- RailwayLAB
- PhD research
- Conclusion

Introduction

- Current timetable is not always conflict-free and realizable for train driver
- There is a need to improve our current way of timetable design:
 - Improve on-time running
 - Increase capacity
 - Decrease energy consumption
- Different projects to improve our timetable design methodology:
 - Project DINT
 - Project running times
 - RailwayLAB research
 - PhD research on EETC & EETT

Project DINT (1/5)

- Current timetable is developed and delivered in full minutes
- For improving on-time running, timetable fractions for train drivers (arrival) and train conductors (departure) should be separated and on smaller intervals
- Develop timetable in 1/10 min (6 s) accuracy
- Better for executing the timetable by train drivers and train conductors & provides more realistic slack time distribution

ТР	Act	Com	Sched	Sup	
Amf	V	10.0	10		Amf-Ut treinserie 1700
Amfva	D	12.2	12	0.0	180Snelheid Kaal
Dld	D	15.8	15	-0.5	160 Black 3,0 Ub 9,5 Benodige snelheid plan 140 Did 5,5 Dim P Black 3,0 Ub 9,5 Black 3,0 Ub 9,5 Descuperen rijtigd 120 met constants snelheid
Bhv	D	17.3	17	0.5	120 Didé Bhu dé Bhu dé Bhu de 12,3
Bloa	D	18.6	18	-0.3	60 40 Andre 20
Uto	D	19.9	20	0.8	20 0 ut 12,8 ut 15,0
Utoa	D	20.6	21	0.4	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Amf Amfry Di Bhy Bloa Uto Utra
Ut	А	23.4	25	1.3	

Project DINT (2/5)

- By-pass in timetable design process (only 2monthly amendments) since 2016 (Viriato/DONS)
- Pilot with Smart Watch for train conductor to departure exactly on time, counter starts at 35 s and disappears at 15 s
- Current research: project PINT (planning in Donna in 1/10 min)
- Energy savings only DINT: 2% in 2016
- More energy savings achieved combined with DAS RolTijd App at least 4% extra (up to 6%)

		8 10	0% 🗎 08:5
RolTijd 0.	321 🔎	EEN VE	ERDER 🚦
Dienstdatum	Standplaats	Dienst	
di 30 🔻	WDemo02	 Alle 	-
Advies Online	Demo		08:35:33
		-17	
Mat type: Tre	in	Wind	i: 15 km/h
Volgende doo	rkomst (tijd, pla:	ats)	
Doel tijd: 201	4-09-05 15:49:	42 AANK	28.464
Drpt: Srn	Act: K Trnr: 684	9 Snel:A	040
stop-door, 201	5-04-02		
Huidige tijd /	positie / snelhei	đ	
GPS tijd: 201	14-09-05 15:47	:52 0	
Pos: 5.8685	67 51.075218	-0.00	0 496
Huidige sheini	eid: 111.0		0.460

Project DINT (3/5) Example

Current timetable in full minutes

HC	UT	610	di 1	13-jan-2	01
17:4	5	01:45		8:00	
Soor	t	Trein	Va	n Tot	
*			U	t Ut	
		6069	U	t Tl	
		6070	Т	l Ut	
RBCR	es		U	t Ut	

Difference with current timetable

- 1. Planned times in s
- 2. Short stops divided into arrival and departure
- 3. Some arrivals are earlier
- 4. Extra information (dwell time, running time, supplements, speed advice, etc.)

Improved timetable with 1/10 minutes

					1		4.				
							6000 oneven				
		patroon tv SLT	veede halfu km	ur Dienstreį	geling		Rijtijd/ Halteertijd	Buffer	Opmerkingen	Rijadvies	
		Ut	V	× 55	5						
		Utva	D 36.5	× 57	7		1 36	24	Doorkomst na 3500 ri Hrl	1x 80	
	_	-Utl	А	× 59) ¹²		2 00	12			
	2	011	V	59	54	\triangleright	42			1x 85	
	3	Htn	A		3 24	\mathcal{D}	3 ¹⁸	12			
	2	Htn	V	× 04	1 ⁰⁶		42			1x 70	
\square	-23	Htnc	А	× 06	36 36		2 ¹⁸	12			
Ι.		Htms	V	× 09	9		42	1 42	Wachten op vertrektijd; vertrek na patroonmatige goederentrein		
	3	Cl	A	× 15	⁰⁶		5 ⁰⁶	1	Overmatige buffer ivm patroonmatige goederentrein		
	2	Cl	V	10	5	D	54				
\setminus		Gdma	D 24.6	× 19	9 ⁴²		3 ⁴²		Geen buffer, doorkomst kort voor 800 ri Mt		
	\setminus	Gdm	А	× 21	L		1 24	-06	Te krappe rijtijd; aankomst kort voor 800 ri Mt		
		Gdm	V	× 23	3		42	1 18	Wachten op vertrektijd ivm kruisen Wnn	1x 100	
.		Wnn	D 37.3	× 29	9		5 ³⁶	24			
	3	Tpsw	X	× 30) 30		1 24	06			
	2	Tpsw	v	× 31	1 24		54		Stop/doorschakeling	1x 80	
	3	TI	А	34	1 54	D	2 ⁴⁸	42			

Project DINT (4/5)

Process with "by-pass" to generate 1/10 min timetable

Project DINT (5/5)

Results

Full minutes

1/10 minutes

Project running times

- Investigate how to compute running times and slack time
- Computation of running times:
 - Minimal
 - Total with slack time
- Computation of slack time:
 - Amount
 - Distribution
- Current results:
 - Use smaller time fractions for timetable (1/10 min)
 - Minimal running times: MA, CR (speed limit), MB (0.5 m/s²)
 - Apply 8% slack time without rounding to full minutes
 - Distribute slack time equally over trajectory

RailwayLAB (1/2)

- RailwayLAB: ProRail + NS innovation departments
- Focus: serious gaming, simulation and planning
- Planning in seconds instead of full minutes
- Timetable performance indicators (start with feasibility)
- Checking both scientific research + market consultation + European infrastructure managers & train operating companies
- Result: focus on microscopic timetable design & simulation
- Pilot with RailSys:
 - Aim: gain insight into microscopic timetable design and simulation and compare this with current timetable design process
 - Active participation of timetable planners NS on case Oude Lijn
 - Comparing conflict detection based on norms vs. block overlap
 - Analysing effect conflicts with deterministic simulation

Intermezzo: conflict detection (macro vs. micro)

Macroscopic: detection at timetable points based on norms (headway times) by Donna

korte stop (K)

vertrek (V)

RailwayLAB (2/2)

- Direct feedback with RailSys whether timetable is feasible by checking conflicts and speed profile
- Insight in effect distribution running time supplements for train driver
- Possibility for planners to apply deterministic simulation to see effect of possible conflict
- Potential: compute energy consumption of developed timetable
- Improvement DONS: including block occupation + conflict detection

PhD research on EETC and EETT

- PhD research about energy-efficient train control (EETC) and energyefficient train timetabling (EETT)
- PhD research commissioned by NS & conducted with TU Delft
- Aim thesis: develop design principles for energy-efficient timetables by considering total running time + robustness timetable
- Current research results mainly for EETC:
 - Literature review and optimal control theory
 - Comparing different (eco-)driving strategies
- Research on EETT still in progress

Invited Review

Review of energy-efficient train control and timetabling

Gerben M. Scheepmaker^{a,b,*}, Rob M. P. Goverde^a, Leo G. Kroon^{c,d}

Conclusions

- Project DINT:
 - Improving timetable by smaller time fractions
 - Currently by-pass, in future in timetable model
- Project running times:
 - Focus: computation of running times for timetable design
 - Smaller time fractions
 - 8% slack time and equal distribution
- RailwayLAB:
 - Collaboration between NS and ProRail Innovation
 - Research microscopic timetable design and simulation
- PhD research:
 - Developing design principles for energy-efficient timetabling

Questions?

Thank you for your attention!

Contact: gerben.scheepmaker@ns.nl