Ours Levers to reduce the Energy Consumption

- Weight Reduction
- Line receptivity in Braking
- Intelligent Traction Control
- Energy Storage
- High efficient HVAC “Climpac”
- Efficient Traction and Auxiliary Converters
- Train Motion Resistance
- Efficient Traction Motors

OBJECTIVE: -20% by 2020 vs 2014
Efficient Traction and Auxiliary Converters

Traction SiC
- Energy saving: -10% @ train level (Regional train)
- Operator should implement in tenders energy criteria with a high weight and a dedicated cost model

Medium Frequency Architecture
- Automatic reversible mode to supply (HVAC & Traction) from auxiliary batteries (ie: can move train in depot without catenary)
- IGBT or Full SiC technology, Naturally Cooled or by air forced
- Up to 30% less volume and weight. Efficiency (full power): 96%

Optimized Traction Converter & Cooling Systems
- Optimized converter PWM & control strategy limiting inverter & traction motor losses and maximizing the regeneration in brake
- Move from forced air to natural cooling (fan removed)
- Maintenance gain for the operator
Efficient Traction Motors

- **Latest generation high energy efficient Permanent Magnet Motors**
 - Lighter than an asynchronous motor for a given power
 - Energy consumption: up to -15%

- **High speed Motors**
 - Less weight & volume \rightarrow less energy
 - Prediction of cooling noise by CFD (Computational Fluid Dynamics)
Intelligent Traction Control

- **Energy consumption between drivers**
 - Up to 30% more in freight trains
 - Up to 10% in high speed trains
 - Up to 5% in tramways

- **Algorithms to optimise the speed profile**
 - Be able to calculate an optimised speed profile
 - Give advices to the driver (embedded or standalone)
 - Automatic eco cruise control
Energy Storage

- **On Board Energy Storage System**
 - Energy recovering in regenerative Braking
 - Reusing in Traction phase
Reversible “Heat Pump” – CLIMPAC

- **New HVAC based on the ”Heat Pump”**

 - To move thermal energy thought an optimized digital control of the compressor to replace the traditional systems using heaters by resistances.

CLIMPAC

13.7 MWh saving per unit per year
(Test on Regiolis application)
Weight Reduction

- **By the using of special materials**
 - Composite materials
 - Ultra High Strength Steel

- **By design optimization of the magnetic parts (less iron and copper)**
 - Medium Frequency Auxiliary Converters
 - High Speed Traction Motors
Train Motion Resistance

- **Accurate simulation tools**
 - Pioneers in the application of new technics
 - CFD (Computational Fluid Dynamics) applied to the complete train model
 - CX improvements applying modifications in several parts of the train: nose, bogies, gangway, pantograph..
 - Energy saving: up to 3% (kWh/t) at train level
 - With complete optimisation (Cx & air flow), up to 9% (kWh/t) for global aero resistance
Line receptivity in Braking

HESOP: reversible power-supply substation

- Designed to deliver better energy efficiency for urban and suburban public rail transport networks (600V/750V/1500V DC)
- 99% of recoverable energy during braking mode which can be re-injected into the electricity network