yis DIGITAL DAY

7 October 2016 Paris UIC Headquarters

UIC DIGITAL DAY Paris, 7 October 2016

Digitalisation at DB – What is in it for Rail Freight? UIC Digital Day

Dr. Markus Ksoll | Deutsche Bahn AG | October 2016

Agenda

Digitalisation at DB

Focus on Freight

Summary

Overview of revenues, EBIT and employees of DB and its business units 2015

1 As of December 31, 2015; 1 Difference between total for divisions and DB Group due to other activities/consolidation (revenues, EBIT) and other (employees); 2 full time equivalent

4 Deutsche Bahn AG

Since 1994 German rail freight has seen strong growth - however, with less dynamics in latest years

Own estimation, as of March 2016, 16 Deutsche Bahn AG

5

,, We are facing the most radical CHANGE since Rail Reform."

Rüdiger Grube

In order to best exploit the benefits of digital transformation, DB has introduced six 4.0 initiatives and a competence center

Digitalization Competence Center

Central platform under the auspices of the CEO to coordinate the initiatives and facilitate dialogue among them

Among these digitalization activities, logistics 4.0 is specifically dedicated to freight - others also provide positive spill-overs

Mobility 4.0

This initiative works to design new products with a focus on **customer centricity**, based on different scenarios for developments on the digital mobility markets. It also works to establish a strong **culture of innovation** as a foundation

Logistics 4.0

This initiative uses **big data** and **smart assets** to develop a product portfolio for the future, **digital customer interfaces** and **web-based production processes**

Infrastructure 4.0

This initiative focuses on digitalization in infrastructure: end-to-end connectivity with customers, digital process improvements and the creation of new business models

Working Environments 4.0

This initiative centers on overarching topics involved in **working, communicating and learning**. Potential future scenarios are drawn up for **job profiles**

Production 4.0

This initiative focuses on the **automation** and digitalization of rail operations and maintenance

This initiative works to develop a **smart, agile, effective, efficient** and **reliable IT landscape** for DB

Agenda

Digitalisation at DB

Focus on Freight

Summary

Agenda

Focus on Freight

Overview

Data Analytics and Asset Intelligence

Automated Train Operations

3D Printing

Digital transformation through Logistics 4.0

4.]

logistics

Target picture: Logistics market of the future

- Key developments
- Business models
- Competitive landscape

Draduat of t

2

3

- Product of the future
- New digital solutions
- Customer interface of the future

Optimized processes & assets

- Data analytics
- Asset intelligence
- Automation
- Workplace of the future

Enablers

- DB Labs
- Research cooperations
- Customer innovation projects

1

Eight key developments in digitization will shape the future of transportation and logistics

Logistics 4.0

Agenda

Focus on Freight

Overview

Data Analytics and Asset Intelligence

Automated Train Operations

3D Printing

Asset & Maintenance Digitization

Intelligent Locos (TechLok)

Equip locomotive fleet with sensors and connect assets to integrated database (status: 600 of 2,000 locos)

Asset

Intelliaence

Continuously detects optimisation potential with

LCC-mapping for fleet-planning and technical

Digital Detection Provides staff with real time damage

Semi automatic Damage

Provides staff with real time damage

6

Condition Based Maintenance

Optimise maintenance rules, knowledge, processes

Detection (SDW)

information

and timing.

information

Asset Intelligence Center

Data

Analytics

Build integrated Asset Intelligence System (locos & wagons); harmonise data formats; align interfaces; generate knowledge base and provide intelligence to optimize all business processes

Optimisation and automation of processes

TechLOK and Wagon Intelligence provide signals in operative systems acrross the entire value chain (e.g. operations and sales)

Digital Fleet Management Bundles condition based requirements and matches it with maintence capacities

Implementation 9

Live-

Regelwerk 4.0

Provide digital and flexible maintenance rules and CBMknowledge in a data model with fast adoption; make speciffic information available on tablets in maintenance yards

10 Workshop Management System

Digitization and automisation of orders and ressource logistics in maintence yards

DB Cargo AG | V.CBA | Assets & Maintenance Digitization

RAM-LCC Analysis

14 Deutsche Bahn AG

Wagon Intelligence

Equip wagon fleet with sensors and

connect assets to integrated database (status: 500 of 90.000 wagon)

improvements

TechLOK

Use case specific data is generated at the locomotive and handled for all fleets at DB Cargo Asset Control Tower

Agenda

Focus on Freight

Overview

Data Analytics and Asset Intelligence

Automated Train Operations

3D Printing

The European rail freight sector is lagging behind in the development of automated operations

Examples

SCANIA

Mercedes-Benz Future Truck

Autonomous Truck Convoys

Scania

Various autonomous vehicle pilots on roads

Mercedes-Benz F 015 Luxury in Motion research car

A7 Sportback piloted driving concept

Automated train operations

Examples

18 Deutsche Bahn AG

Automation is a major element of DB Cargo's technology & innovation strategy - three development areas are targetet

Key development areas

Technologies

Auto Control

advanced auto-pilot plus remote control, harmonized with existing train control and monitoring systems

Functions

Access to control by an

Obstacle detection

Detection of potential obstacles ahead of locomotive, through advanced signal technologies in order to comply with safety standards

On-board monitoring of critical components plus additional system surveillance in order to guarantee reliable system functioning

Integrated ATO allows for safe and reliable...

- Efficiency increase by higher capacity utilization, energy savings and availability of resources
- Short-term adjustments and flexibility towards changing customers' requirements
- Creation of attractive job profiles and new opportunities in dealing with labor market trends

Testing of ATO functions will take place in threestage approach:

- 1. Test of basic auto control functions on separate test ring and shunting yard (humploco)
- 2. Test of auto control and obstacle detection on German network with mainline loco
- 3. Test auf full ATO system requirements on international freight corridor

ATO currently in several pilots

Example: DB Cargo develops automated shunting yard with humploco in München Nord

Dieselloco Baureihe 290

- Command of Loco via Onboard Computer enables fully automated operation
- Equipment of Loco and/or infrastructure with sensors to detect obstacles in near field (radar, camera)
- Step 1, 2017: Fully automated humploco with obstacle detection (demonstration)
- Step 2, 2018/19: Pilot operations and licencing
- Stufe 3, 2019/20: Rollout in further/ all shunting yards

Agenda

Focus on Freight

Overview

Data Analytics and Asset Intelligence

Automatic Train Operations

3D Printing

"3D printing has the potential to revolutionize the way we make almost everything" (Barack Obama, US President, State of the Union 2013)

3d printing consists of more than 20 different technologies

DB

3D printing / Additive Manufacturing

Fused Deposition Modeling (FDM)

Quelle: i.materialise.com/

Selective Laser Melting (SLM)

Quelle: EOS GmbH

How does it work? "A process of joining materials to make objects from 3D model data, usually layer upon layer [...]"

Laser strahl **Principle of Powderbed** technology Verschmelzen Auftragen Absenken **Digitales Datenmodell des** Verschmelzen Auftragen **Bauplattform** Auftragen der Wiederholung **Bauteils** Pulverschicht des Pulvers im senkt sich um nächsten bis das Bauteil **Bauteilschnitt** eine Schicht Pulverschicht fertig ist **Economic** Step 1: Step 2: Step 3: Step 4: Step 5: & technical Engineering / **Pre-Process** Additive production Post-Process Finish feasibility check Digitalisation (In-Process) General Process

Source: http://www.3dprecision.ch

Source: http://www.eos.info

Wide range of applications - use cases

Acceleration of

- Decision making
- Time to market

Rapid / Direct Manufacturing

Junction box

Improvement of

- Obsolescene management
- Availability
- Downtime

Sandform / sand mould

Reduction of

- Tooling costs
- Process times

Target of DB project: 1,000 3D printed parts in 2016

It all started with a simple hook hanger...

Use case: Partial substitution of spare parts within a component

1:1 CAD-Modell

Optimised version

Dust protection cap (ca. 7 x 7 x 2 cm)

- Red cap: For closing brake lines on various vehicles for track works
- Cap often breaks in operations and cannot be purchased seperatly
 - \rightarrow in the past: the whole coupling head had been exchanged (incl. Brake test, lake test)
- Constructive optimization of part, field tests coordinated
 → in future: exchanging caps without additional amount of work

Use case: Faster procurement process by printing casting moulds

Lever (ca. 50 x 10 x 20 cm)

- Heavy-duty brakes automation for freight wagons
- Castings for cost reduction
- Testing 3d-printing technology of sand moulds (Rapid Tooling)
- Conventional cast in original alloy, additional machining/ lack of original data

3 kinds of effects on business model of 3D-printing

Overview of effects

Quick-Wins

Criteria for 3D printable spare parts

1.	Cases of application	 Obsolete components Low Volume with high costs (incl. Non-recurring costs) Accident repair Prototype 	4.	Specification for production	 According to manufactures specifications Including reverse engineering Optimized parts
2.	Requirements to the component	 Regardless of the security relevance Simple or complex geometry Conventional production is cost intensive 	5.	Materials	 Tool & stainless steels, aluminum (Titanium, Inconel, CoCr) Polyamide, ABS, PEEK, Ultem (flame-retardent)
3.	Availability	 Reduce system failure (train, locomotive, etc.) Replace components with long delivery times 	6.	Maximum component size	 914 x 610 x 914 mm plastic 630 x 400 x 500 mm aluminum 250 x 250 x 300 mm steel

DB initiated network for 3D printing of spare parts, called "Mobility goes Additive"

32 Deutsche Bahn AG

Currently, more than 40 partners are on board, if you like to join ...

33 Deutsche Bahn AG

Agenda

Digitalisation at DB

Focus on Freight

Summary

Digitalisation is of high relevance to railfreight markets and production - DB is taking it as a great opportunity

□ Customer centricity and operational excellence are major objectives - culture and speed of innovation are crucial factors

□ Major fields of action in railfreight are data analytics/ asset intelligence and automation in mainline/ shunting operations - many projects already launched

UIC DIGITAL DAY Paris, 7 October 2016

yis DIGITAL DAY

7 October 2016 Paris UIC Headquarters

UIC DIGITAL DAY Paris, 7 October 2016

