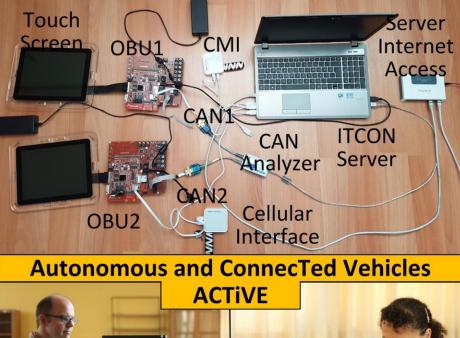
### APPLICATION OF CONNECTED AND AUTONOMOUS VEHICLE (CAV) TECHNOLOGIES FOR AUTONOMOUS TRAINS

Klaus Werner Schmidt Department of Electrical & Electronics Engineering Middle East Technical University

#### 23 November, 2022



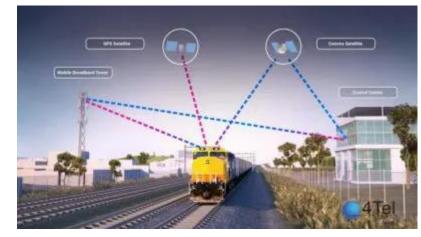

## Active Lab

### Topics

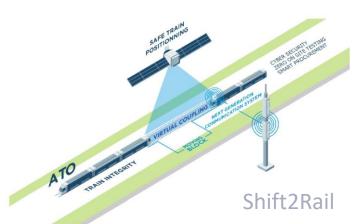
- Autonomous driving applications
- Sensor data processing
- Model-based control
- Simulation
- Real-time embedded systems
- In-vehicle communication
- Vehicle-to-everything (V2X) communication
- Train communication network (TCN)

## Vehicle Connectivity









## Motivation

- Autonomous Trains
  - Improve the overall safety
  - Increase existing capacity
  - Lower operational costs
  - Improve service reliability
  - Improve energy efficiency

#### $\Rightarrow$ Very similar to CAVs



Nvidia Blog

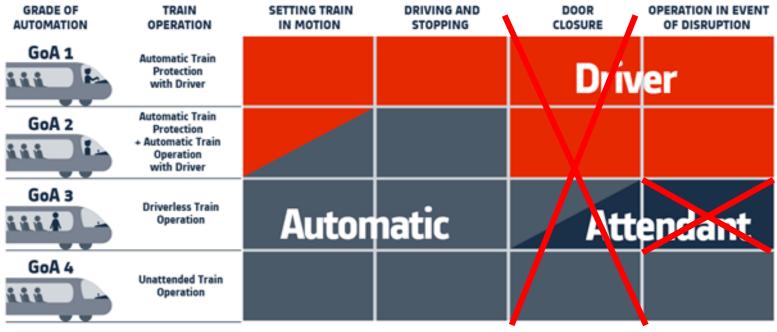






## Outline

### Motivation

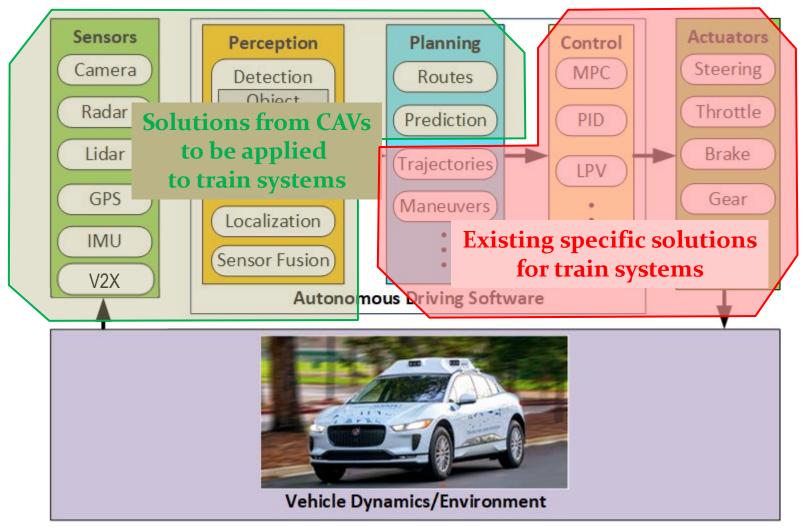

- Autonomy Levels
- Architectural Considerations
- Sensor Technologies
- Example Correspondences

Summary



### Classification of ATs: GoA Levels

### Automatic Train Operation: Grade of Automation




ALSTOM

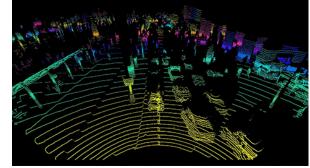
#### $\Rightarrow$ CAV Technologies are applicable to several subproblems



## CAV System Architecture: Relevant Components






## AV Components: Sensors

Cameras

- Provide 360° field of view
- Object detection
- Lane detection
- Lidar (Light Detection and Ranging)
  - Shape/depth of environment
  - Object detection/localization
- GPS/IMU
- V2X Communication



Analytics Vidhya



The New York Times

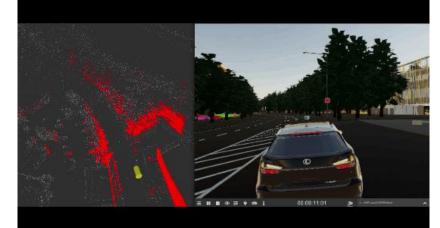


## Examples: Vision-based Object Detection

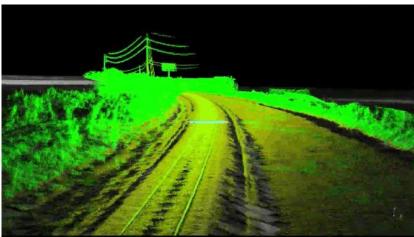
- Common Methods
  - Deep neural networks
- Similarities
  - Objects (cars, trains, people)
  - Real-time requirements
- Differences
  - Relevant distances
  - Environment
  - Scenarios
- Conclusions
  - Similar methods
  - Different training/test data



#### Active Lab




#### Transportmen




## Examples: Lidar Localization

- Common Methods
  - Point cloud mapping
  - 3D registration algorithms
- Similarities
  - Sensor technology
  - Real-time requirements
- Differences
  - Environments
  - Vehicle motion
- Conclusion
  - Similar methods
  - Different features

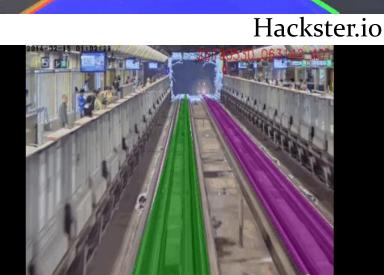


#### Active Lab



#### Realitxy IMT Inc.




## Examples: Vision- and GPS-based Localization

- Vision-based Localization
  - Lane detection for CAVs
  - Track detection for ATs
    ⇒ Application of same methods

#### GPS-based Localization

- CAVs: Sensor fusion with motion data
- ATs: Sensor fusion with inertial navigation data
- $\Rightarrow$  Application of same methods







KW

## Examples: Sensor Fusion of Lidar and Camera

### Cameras

- High resolution
- + Distinguish colors
- Sensitive to light conditions
- No distance measurement

### 🗖 Lidar

- + 360\* field of view
- + Distance measurement
- Cannot distinguish colors
- Limited object classification
- Sensor Fusion
  - Compensate disadvantages
  - Improve robustness/accuracy

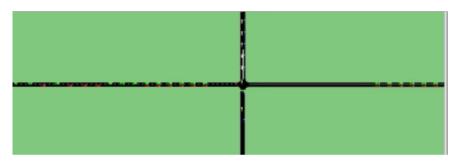


Strad Vision



#### Realitxy IMT Inc.




## **Examples: V2X Communication**

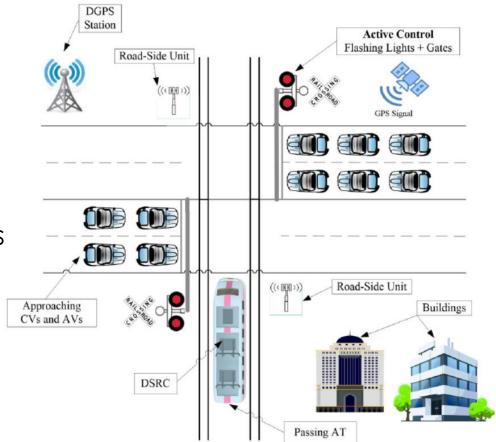
### 

- On-board units (OBUs)
- Road-side units (RSUs)
- Safety warnings
- Traffic management
- Coordination (future)

#### ATs

- Communications-based train control (CBTC)
- Moving block signaling
- Conclusion
  - Different technologies
  - Different applications




Active Lab



## Examples: Intersection between the Two Worlds

### Highway-rail Grade Crossing

- CAVs communicate with RSUs
- ATs communication with GSM-R
- Required Integration
  - Provide approaching train information to RSUs
  - Provide CAV traffic information to train communication system



## Examples: Simulation-based Tests

- Model-in-the-Loop
  - System model is simulated
  - Software code model is simulated
- Software-in-the-Loop
  - System is modeled
  - Software-code is simulated
- Hardware-in-the-Loop
  - System model is simulated in real time
  - Software code is deployed on real hardware

#### $\Rightarrow$ Also required for ATs

 Bargherry, Markowskiele, Barg

#### Active Lab





### Summary

- Corresponding Problems
  - Object detection
  - Localization
  - Safety warnings and measures
  - Traffic management
- Corresponding Technologies
  - Sensors and sensor processing
  - Sensor fusion
  - Integration of CBTC and V2X communication system
  - Simulation-based testing on different levels



# **THANK YOU FOR YOUR ATTENTION!**

### APPLICATION OF CONNECTED AND AUTONOMOUS VEHICLE (CAV) TECHNOLOGIES FOR AUTONOMOUS TRAINS

#### **Klaus Werner Schmidt**

Department of Electrical & Electronics Engineering Middle East Technical University

23 November, 2022

