Assets for Automatic & Autonomous Operation Webinar

ONLINE 23 November 2022

Introduction of Automatic Train Operation system in JAPAN

Current state of ATO in Japan Newly developed intermittent type ATP-based ATO system

Shigeto Hiraguri Research and Development Promotion Division, RTRI, JAPAN Hiroyuki Fujita Signalling Systems Laboratory, RTRI, JAPAN

Signalling Systems Laboratory Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

Railway Technical Research Institute 🔍

Outline

Chapter 1

Current state of ATO in Japan

- 1-1 Grade of Automation by IEC 62267
- 1-2 Outline of typical ATO lines in Japan
- 1-3 Comparison with ATO introduction status in Japan and overseas
- 1-4 Future development of ATO in Japan

Chapter 2

Newly developed intermittent type ATP-based ATO system

- 2-1 Concept of intermittent type ATP-based ATO system
- 2-2 System overview
- 2-3 Functional verification tests
- 2-4 Commencement of commercial operation as GoA 2

Outline

Chapter 1

Current state of ATO in Japan

- 1-1 Grade of Automation by IEC 62267
- 1-2 Outline of typical ATO lines in Japan
- 1-3 Comparison with ATO introduction status in Japan and overseas
- 1-4 Future development of ATO in Japan

Grade of Automation by IEC 62267

Railway applications

- Automated urban guided transport (AUGT)
- Safety requirements

Basic functions for each GoA Automated Train Operation ATO GoA 3 GoA 0 GoA 1 GoA 2 GoA 4 **Basic Functions** TOS NTO **STO** DTO UTO Driverless On-site Semi-automated Unattended Non-automated Ensuring safe movement Staff Staff/System System System System Staff Staff Driving System System System Supervising guideway Staff Staff Staff System System Supervising passenger Staff Staff Staff Staff/System System transfer Dealing with emergency Staff Staff Staff Staff System/OCC

Staff: responsibility of operation staff (may be realized by technical system) **System**: realized by technical system **OCC**: Operation Control Center

About 40 lines (more than 700 km) in operation as ATO

Currently	GoA 2	GoA 3	GoA 4
Introduction case	STO Semi-automated	DTO Driverless	UTO Unattended
	30 lines	1 line	9 lines
Japan	Marunouchi line Tsukuba Express Etc.	Disney resort line	Yurikamome Port liner
	About 350 lines	About 10 lines	About 140 lines
Overseas	RATP line 3, 5 Etc.	BART Etc.	RATP line 1, 14 Nuremberg U2, U3 Etc.

Current ATO preconditions in Japan

Introduced continuous type ATP called Automatic Train Control, ATC
Physically separated from outside

by dedicated elevated tracks, underground tracks and platform screens

Introduction example: Marunouchi line, Tokyo Metro

Marunouchi line, GoA 2 with ATC

between Ogikubo and Ikebukuro via Shinjuku, Nakano-sakaue and Honancho (branch line) 27.4 km (Number of stations: 28), Maximum speed: 75 km/h

Introduction example: Tsukuba Express line, MIR

Tsukuba Express line, GoA 2 with ATC

between Akihabara and Tsukuba 58.3 km (Number of stations: 20), Maximum speed: 130 km/h

Introduction example: Yurikamome

Yurikamome, GoA 4 with ATC

between Shimbashi and Toyosu 14.7 km (Number of stations: 16), Maximum speed: 60 km/h

> Upper left photo: Shiodome station platform https://en.wikipedia.org/wiki/Shiodome_Station#/media/ File:Shiodome-Sta-Yurikamome-Platform.JPG

Comparison with ATO introduction status in Japan and overseas

Current status of introduction in Japan

ATO include GoA 4 have a long history – *first GoA 4 example in the world* About 40 lines operated mainly in subway (GoA 2) and AGT (GoA 4)
No example of ATO in a general lines¹⁾

1) General lines: not separated from outside Ex. with level crossings, without platform screens

Current status of introduction in overseas

GoA 2 is progressing not only in subway but also urban railways
More than 100 lines operated mainly in subway (GoA 3 and GoA 4)

Ref.1 Aoyagi: "Efforts for automatic driving in railways and the concept of safety and reliability " Reliability Forum 2021, REAJ (in Japanese)

Future development of ATO in Japan

Driverless operation in general lines, aiming for GoA 3 and 4

Need to sort out new requirements that are different from AGT

AGT with ATC Ex. Yurikamome

Physical separation from guideway

Full-height platform screens

Prevention of physical obstacles to adjacent lines

Without level crossings

Evacuation taxiway for easy evacuation

General lines with ATC Ex. Yamanote line

Physical barriers along track Track intrusion detection

Partial-height platform screens Track intrusion detection

Derailment detection or detection of obstacles to adjacent lines

Warning detection Detection of obstacles

Automatic stopping avoiding places for difficult evacuation

Currently, **driverless operation** in general lines is one of the topics in the study group of Ministry of Land, Infrastructure, Transport and Tourism (MLIT) And this topic is beginning to be considered by JR East

Signalling Systems Laboratory Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

Future development of ATO in Japan

Aiming to realize new definition "GoA 2.5"

□ Reduction of train operating costs to maintain rural lines

Realizing ATO based on intermittent type ATP called **Automatic Train Stop, ATS**

- In current Ministerial Ordinance in Japan, GoA 3 and GoA 4 are assumed to be performed by ATO system under protection of ATC
- Introducing ATC would entail a huge amount of investment costs to replace ATS

Signalling Systems Laboratory

Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

Future development of ATO in Japan

Aiming to realize new definition "GoA 2.5"

D Reduction of train operating costs to maintain rural lines

ATO with staff who does not have driver's license

- Staff who is not required the driver's license is placed at front end of the train instead of the licensed driver
- Staff at the front end is in charge of roles such as stop operation and evacuation guidance in emergencies

	GoA 2	GoA 2.5	GoA 3	GoA 4
Basic Functions	STO Semi-automated	Not defined in IEC 62267	DTO Driverless	UTO Unattended
Ensuring safe movement	System	System	System	System
Driving	System	System	System	System
Supervising guideway	Driver	Staff	System	System
Supervising passenger transfer	Driver/Conductor	Staff	Staff/System	System
Dealing with emergency	Driver/Conductor	Staff/OCC	Staff	System/OCC

Currently, a type of the train operation tentatively called **GoA 2.5**, is one of the topics in the study group of Ministry of Land, Infrastructure, Transport and Tourism (MLIT)

Signalling Systems Laboratory Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

Outline

Chapter 2

Newly developed intermittent type ATP-based ATO system

- 2-1 Concept of intermittent type ATP-based ATO system
- 2-2 System overview
- 2-3 Functional verification tests
- 2-4 Commencement of commercial operation as GoA 2

Concept of intermittent type ATP-based ATO system

Background and purpose

□ Reduction of train operating costs to maintain rural lines

Realizing ATO based on intermittent type ATP

- Based on ATS-DK introduced in Kyushu Railway Company (JR Kyushu) general lines
- Reducing cost by utilizing established ATS for automatization of driving operation

Realizing ATO with staff at front end without driver's license

Staff at the front end is in charge of roles such as stop operation and evacuation guidance in emergencies

Development of ATS-DK based ATO system equivalent to GoA 2.5

Signalling Systems Laboratory Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

Concept of intermittent type ATP-based ATO system

Outline of ATS-DK

- □ Introduced in JR Kyushu general lines
- □ Intermittent type ATP with permissible speed profile
- Continuous detection of absolute position for using on-board database

Concept of intermittent type ATP-based ATO system

12 **Comparison with ATC-based ATO Key difference ATC ATS** with permissible speed profile Verification from 0 km/h No verification from 0 km/h Speed check **Continuous signal transmission** Intermittent signal transmission by rails etc. by beacons Control information update frequency

D Two main impacts of the above differences for control functions

- 1. Departure control from stopped state
- 2. Response to sudden signal changes to stop in emergency and the like

Ensuring the required safety by complementing functionality

Signalling Systems Laboratory Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

System configuration

□ Added new ATO equipment and beacons to existing ATS-DK equipment

Complemented functionality against ATC

System overview

Method of achievement for function complement

□ Introducing fail-safe ATO on-board equipment called FS-ATO

Ensuring required safety by whole system with combination of FS-ATO and ATS-DK

This concept is different from the current ATO and indicates one direction for realizing ATO without redesigning of existing ATS

	ATC-based ATO	ATS-based ATO Combination of ATS-DK and FS-ATO
Automatic operation function	ATO Equipment and function are not required to be safety-related	FS-ATO Safety-related fail-safe equipment is applied and performs the part of safety-related functions
Safety function	АТС	, ,
	Equipment and function are required to be safety-related	ATS-DK Safety-related fail-safe equipment is applied and performs the part of safety-related functions required as ATS

Test method

Carried out with mass-produced prototype equipment

Phase	Test type	Periods	Location	Contents
1	Factory test	Aug. '19	Manufacturer's factory	Functional verification with simulator
2	Static test	Aug. '19	Rolling stock depot	Combination test with vehicle, Input / output confirmation
3	Running test 1	Sep. – Oct. '19	Rolling stock depot	Basic function, reproduction anomaly in test track
4	Running test 2	Oct. – Nov. '19	JR Kashii Line between 3 stations	Basic function, reproduction anomaly in commercial line

Signalling Systems Laboratory Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

Test results

Control function of safety and operationDistance calculation and stop position accuracy

No problem in practical use because the functions of this system were operating according to the specifications through functional verification tests

Example of control state at departure from first station

Verified following functions by analyzing operation status record data of ATS-DK and FS-ATO equipment

- Speed profile generation
- Receiving beacon information
- Automatic running control
- Distance calculation accuracy

Commencement of commercial operation as GoA 2

Verification of control stability

2,500 km running test1,000 station stops

Tuning and verification of stop position accuracy, driving time, and ride quality were carried out

Commercial operation as GoA 2 for proving runs

 Since the end of 2020
A licensed driver has been onboarding a commercial train on JR Kashii line for proving runs toward the realization of GoA 2.5

Signalling Systems Laboratory Signalling and Transport Information Technology Division Copyright 2022, RTRI, All rights reserved.

Conclusions

Current state of ATO in Japan

ATO include GoA 4 have a long history – *first GoA 4 example in the world* About 40 lines operated mainly in subway (GoA 2) and AGT (GoA 4)
No example of ATO in a general lines

In the future

Driverless operation in general lines, aiming for GoA 3 and 4
Aiming to realize new definition "GoA 2.5"

