Welcome to the best practice workshop

Proposed by the UIC Energy efficiency and CO₂ Emissions Sector

Organised by the Sector's Chairpersons:

Bart Van der Spiegel, Infrabel, Gerald Olde Monnikhof, ProRail. **Philippe Stefanos, UIC**

BATTERY TRAINS

BEST PRACTICE WORKSHOP

19 May 2021

ONLINE

BATTERY TRAINS

- The meeting will be recorded.
- Please remain on mute while the speaker is active.
- Please keep your camera off while the speaker is active.

he speaker is active. hile the speaker is active.

18 March 2021

Workshop timeline

10 h **First part**

Robert Davies

Christophe Heyndrickx

Paul Tobback

François Degardin Bogdan Vulturescu Matthieu Renault Benoît Gachet

Katrin Seeger

Akos Labady

ARUP ROLLING STOCK Battery Train Procurement

Robert DAVIES Global Rolling Stock Leader - Arup

UIC battery trains - 19 May 2021 Online Workshop

Rolling Stock

in procurement	
ons concept	
olution	
e options	
apacity	
ecycle	
e proofing	
nto service	
clusions	

Welcome to Arup

Arup is an independent firm of designers, planners, engineers, consultants and technical specialists, working across every aspect of the built environment.

Together we help our clients solve their most complex challenges – turning exciting ideas into tangible reality as we strive to find a better way and shape a better world.

We

- Integrate complex new technologies and systems
- Unlock financial value for investors, asset owners and operators
- Optimise performance and value from existing and new assets

Design quality infrastructure and experiences for people and communities Deliver major programmes and develop high performing organisations

Traction battery – operations concept

Example modes

Independent Battery Powered Independent Battery Powered with hydrogen fuel cell Bi-mode with AC external pantograph Bi-mode with DC external pantograph or power rail Bi-mode with with diesel engine

Rail systems Light Rail Metro **Regional and Suburban** Freight

High speed and Intercity

Track Plant and Engineering Trains

Rolling Stock – Battery Solution

Battery power

- Auxiliary equipment
- Traction power
 - Independent
 - Bi-mode

Or

New Build

Retrofit ?

Why battery

- Sustainable
- Emission neutral
- Autonomous power
- (Go anywhere)
- Market driven

Specification

- Performance
- Range
- Capacity
- Charger
- Service life
- Whole life cost

Route options

Policy

Direct costs Capital investment Maintenance Operations

Informed by

- Route demand
- Feasibility
- Sustainability
- Investment
- Whole life cost

Indirect costs

- Carbon emissions Air quality
- Energy consumption Potential incentivisation

Battery capacity

Example system capacity Baseline train with capacity 16 tonne x 8 axles

I need my battery train to provide a...

Local **Shuttle service**

Range 45km Speed 75 km/h Battery 250 kWh 10000 cycles per year 3 ton battery

Range 90km 5 ton battery

Simulation model Power delivery Energy capacity System architecture

End of mainline Branch line service

- Speed 75 km/h
- Battery 500 kWh
- 1000 cycles per year

Extended mainline **Performance service**

Range 90km Speed 125 km/h Battery 1000 kWh 1000 cycles per year 10 ton battery

Battery lifecycle

Energy	36.8 kWh
Weight (typical)	430 kg
Discharging power max.*	334 kW
Charging power max.*	184 kW
Continuous power*	92 kW
Capacity	46 Ah
Voltage nom.	799 V
Cycle life**	> 7,000 cycles
Dimension (L x H x W) in mm	1,844 x 750 x 216

Supply chain Mature battery solutions

Service cycles

Sensitive to depth of discharge Control system health monitoring **Condition management** End of life recovery

Technology watch Energy density

(by/qM) 600 (by/qM) 500 ち 400 dth 300 Ō Battery 005

Future proofing – investment risks

Lifecycle commitment Battery cycle management Obsolescence management

Mode demand Independent / charger **Bi-mode**

Performance potential Technology watch Hybrid battery / power device

Battery module upkeep Refurbishment Periodic replacement End of life recovery

Long life asset Trains ordered today potentially in service to 2060

Battery train – entry into service

Mature regulatory approach Interoperability **Component regulation** Common safety method **Commercial investment** Technical Performance Service agreements Whole life costs

V&V

Traction battery sub-system Rolling stock system Rail systems integration

Railway applications - Rolling stock - Onboard lithium-ion traction batteries (IEC 62928:2017)

Thank you from the Arup team

ARUP

Transformative Rail

The issues shaping the future of the industry

ARUP

SHAPING A BETTER WORLD Energy systems: A view from 2035 What will a future energy market look like?

arup.com/energy

RESEARCH AND Development

DECARB: Battery Powered Trains: Route to Enter into Service Development of a High-Level Operational Concept T1195

Questions Discussion

Robert DAVIES Global Rolling Stock Leader - Arup

Thank you for your attention.

TRANSPORT & MOBILITY LEUVEN

Christophe Heyndrickx

May 12, 2021

ELECTRIFICATION AND OTHER ALTERNATIVES TO DIESEL TRACTION AN APPLICATION FOR BELGIUM

TRANSPORTAAABBBCCC<

Elektrificatie van het Belgische spoorwegnet of het gebruik van andere duurzamere vervoerswijzen de om dieseltractie te vervangen

CONFIDENTIEEL

Rapport voor: FOD Mobiliteit en Vervoer

Datum: 11/12/2020

Auteurs: Christophe Heyndrickx, Sebastiaan Boschmans

Public since 19/2/2021

UIC workshop 19/5/2021

Making rail transport more sustainable

40% of railway lines non-elctrified in Germany, 43% in France

UIC workshop 19/5/2021

Carte des lignes / zones identifiées par les Régions au terme de la consultation écrite comme susceptible d'accueillir une expérimentation hydrogène

TRANSPORT

MOBILITY

Belgian Situation

Nalinn

A large set of lines around Ghent

Genk-Bilzen

'Alternatives for diesel' in Belgium

- **Passenger trains**: electrification of lines versus alternatives \bullet
- 6 (+1) scenarios: \bullet
 - Electrification in 2035 (BAU scenario end of lifetime MW41)
 - Electrification in 2025
 - Battery train in 2025
 - Hydrogen train in 2025
 - New diesel train in 2025

Compare with zero scenario (diesel until eternity - 2100)

<u>High</u> and low valuation of emissions (**DG MOVE**/FPB)

- ulletfuture)
- Quick-scan analyses voor L21c en L204/L55 ullet

Freight train: limited energy density + nog viable alternative usin hydrogen (possibly in the

Battle of the T(ra)i(n)tans

Figuur 11: MW 41 dieseltrein (links), Corradia Lint 41/H in uitbating van Veolia (rechts)

Electric (EMU) / diesel (DMU)

UIC workshop 19/5/2021

Figuur 17: Coradia iLint

Battery (BEMU) / Hydrogen (FCEMU)

Materiaalkosten							
	Diesel (I)	Elektrisch (kWh) Batterij (kW		Batterij (kWh)	Waterstof (kg)		
Gewicht	98 ton (MW 41)	102 to	on (2-ledige Desiro)	108.12	107.1 ton		
Passagiers	150 ¹¹ (MW 41)						
(zitplaatsen)	176 (Nieuw)		176 ¹²	176	176		
Prijs energiebronnen	€0.5		€0.089	€0.089	€2-€5		
	1.62 l (MW 41)						
Verbruik per km	1.2 (Nieuw)	4.08 kWh		4.76 kWh ¹³	0.25 ¹⁴ kg		
	€ 0.81 (MW 41)						
Energiekost (per km)	€ 0.60 (Nieuw)	€ 0.36		€ 0.42	€0.5-€ 1.25		
	€3.5 mln (MW 41)	€4.6 mln. (Desiro)					
Stukprijs materieel	€6.325 mln (nieuw) ¹⁵	€ 5.5 mln (nieuw) ¹⁶		€6 mln	€6.6 mln		
Onderhoudskosten	€ 3.60 (MW 41)						
(per km)	€2.4 (Nieuw)	€ 0.97		€ 1.8	€ 2.40		
Tabel 8: Overzichtstabel infrastructuurkosten							
Infrastructuurkost	Waarde		Bron				
Elektrificatie	€0.4 mln/km (enkel spoor)		Infrabel				
Tractiestation	€5 mln/stuk		Infrabel				
Tankstation waterstof	€10 mln/stuk		Arcadis-Riccardo (2018) / Alstom				
	€2.5 mln/1000 kg synt	nthese Arcadis-Ric		iccardo (2018) / Alstom			
	per dag						
Electrolyzer	+onderhoud €75 k/jaar						
	€5.5 mln/stuk + onder	houd	Arcadis-Ric	cardo (2018) / Als	tom		
Windmolen (3 MW)	€150 k/jaar						

Tabel 7: Overzicht kentallen materieel en infrastructuur

- 1. Large impact of maintenance cost

- 4. Infrastructure cost battery train 0-40% of 'standard electrification'

2. Energy cost for hydrogen comparable to diesel at 2€/kg 3. Hydrogen trains most expensive / electric trains cheapest

Figuur 20: Alternatieve opties vergeleken met directe elektrische trein: eigen bewerking van Cebon D. (2020) en Hofrichter A. et al (2012)

Overall energy efficiency of hydrogen not much better than diesel Environmental benefits hydrogen comparable for non-CO2 emissions (PM/NOx/..)

+ Low efficiency & vulnerability fuel cells (replace every 2-3 years)

Monte Carlo analysis

Monte Carlo: Generate results using a triangle distribution-> 1000 NPV simulations => proxy for sensitivity and distribution of result

UIC workshop 19/5/2021

Sensitiviteitsanalyse volledig - Hoge emissie waarderingen

Sensitivity for maintenance cost -> ceteris paribus Large impact for hydrogen & battery train -> not enough to change ranking

UIC workshop 19/5/2021

Sensitivity for energy cost -> c than maintenance cost

Sensitivity for energy cost -> only relevant for hydrogen, but less

Differences by line

Geraardsbergen

Battery train looks more interesting

Ronse-Eeklo

Standard electrification

Charleroi

Battery + partial electrification may outweigh high cost of full electrification

Elek 2035 Diesel 2025 Elek 2025 Bat 2025 Wat 2025

Impact	Jaar	ENPV (30 jaar)
Reistijdsbaten (Mln. €_	1.782 €	32.60 €
Emissiebaten (optie) (Mln. €)	0.076 €	1.39€
Onderhoud (MIn €)	-0.39 €	-7.08 €
Totaal (Mln.€)	1.585 €	26.91€
Investering in bovenleiding (MIn. €)	12.90 €	
NPV (Mln. €)		14.01€
IRR (%)		12.50%

	Lijn 204	ļ.	Lijn 55	
Scenario	ENPV (€)	IRR	ENPV (€)	IRR
Basiswaarde	-3 324 139€	1.9%	-19 417 786 €	1
Onderhoudskost 2% investering	-613 260 €	3.60%	-16 147 171 €	-9%
Emissiebaten 0.02 € / tkm	3 319 090 €	5.90%	-16 597 481 €	-10.20%
Tijdshorizon naar 40 jaar	-1 672 994 €	3.20%	-19 599 193 €	/
Combinatie van bovenstaande	8 887 303 €	7.90%	-12 676 826 €	-2.45%

L204 (Gent N. – Zelzate) used more intensively than L55 (Wondelgem-Zelzate-Terneuzen)

L204 has a 'marginally' positive score for electrication L55 very negative -> co-benefit with passenger market possible?

Freight lines

L21c (Genk –Bilzen) very high NPV due to large time benefits & bottleneck situation + electrification of Mol-Hamont

Other solutions for freight transport

Both medium/high speed as well as mono/dual fuel combustion engines are being developed

UIC workshop 19/5/2021

TRANSPORT

4

MOBILITY

EUVEN

Vectron Dual Mode

Dual mode electric/diesel

UIC workshop 19/5/2021

🕿 Contact 🚯 Global | English

Search for ...

0,

Keeps going where the wire ends

The Vectron Dual Mode is the up-to-date answer to changing route requirements. The dual power locomotives unite the advantages of full-featured diesel locomotives with those of electric locomotives. The combination of powerful diesel drive and equipment for using the overhead wire empowers you to respond flexibly at all times to your traction requirements - so you'll always keep moving, with or without an overhead wire.

> Interested in Vectron Dual Mode? Our Mobility experts will be happy to advise you.

TRANSPORT & MOBILITY LEUVEN

Conclusion

- ulletelectrified
- (port lines often non-electrified)
- ulleteither full or partial electrification of trains is the best solution
- Hydrogen trains in the present analysis show a number of ulletdisadvantages, though this may be compensated in the future
- ullet

On European market -> substantial amount of lines presently not

In Belgium largely electrified, but limited amount of lines non-electrified + freight transport often has substantial problems bridging last-mile

Market analysis, including substantial sensitivity analysis, shows that Freight trains: future in hybridisation, either with hydrogen or with a

UIC workshop 19/5/2021

Questions Discussion

Christophe Heyndrickx

Thank you for your attention.

TUC RAIL INFRASTRUCTURE INTERFACES

Actual & future battery charging possibilities interoperability & standards

Paul TOBBACK

Lead Design Engineer & OCL expert

Battery trains Online Workshop - 19 May 2021

Find the *really* new kind of rolling stock and look for the differences !

Introduction

What about the infrastructure ?

Challenges for the OCL (Overhead Contact Lines) & power supply (energy subsystem)

Legal (EU): TSI's (Technical Specifications Interoperability) & (parts of) EN-standards when referenced

Technical: standards (UIC550, UIC552, EN50546, EN50119, EN50367, EN50388, etc. and their HC counterparts)

Legal or technical, these documents were not written for trains with batteries for traction purposes !!

Legal - Joint Task Force EIM/CER/EPTTOLA/NBRAIL

Kick off 17/03/2021

Up till now participation from different stakeholders like infra managers, railway undertakings, lessors and Notified Bodies:

• Trafikverket / Bane NOR / Infrabel / SNCF / DB / ÖBB / ČD / RFI / Angel Trains / Sconrail

UNIFE (rolling stock manufacturers) judged it too early to support it already Despite non-participance by UNIFE a clear interest was expressed during bilateral meetings with Siemens Belgium and Bombardier, but no priority for ERA (European Railway Agency) *A* unofficial TF, but not forgotten by ERA and the EC (European Commission) → please join if interested and contact your representative body

In parallel on technical level:

Cenelec workstream in CLC/SC9XC for a TS on "Railway applications - Fixed installations -Requirements for charging stations for accumulator electric traction units based on separate contact line sections".

- railway lines and is fed separately

EPTTOLA

Corresponding CLC WG 25 to further work on the scope and draft the proposed way forward > The contact line section is not connected to other overhead contact line systems of electrified

Objectives Joint Task Force

- Facilitate interoperability and support the EU Green Deal
- Key objective short term:

interoperability requirement proposals for TSIs on short term objectives to allow and facilitate full charging of trains with batteries, without changing other existing requirements neither without blocking other modes of operation for battery train charging purposes by April **2021** (for next TSIs 2022 version)

- Long term objectives:
 - provide inputs for European standardisation needs 0
 - 0

reduce costs for the ENE subsystem enabled by the usage of battery trains

Key topics Joint Task Force

- - 1) define the train needs
 - 2) then work on OCL
- Power demand from the batteries ?
 - 3 Examples with proposals from Stadler for BaneNOR (15kV AC): **3 MW** 4 to 5 MW (1200ton freight train; "Porthos" locomotive = Euro9000 with battery tender)

Train operation studied for Norvegian cases, e.g. a 729km line Trondheim-Bodø, to be only partly electrified over a total of 210km (28,81%, 8 separate electrified sections)

In order to design correctly the OCL for battery trains while charging, it seems necessary to:

2 MW = BEMU (common example in many countries and tested/in operation already; "Aramis", FLIRT) (385ton train with 7 cars or last mile freight train; "Athos" locomotive = Eurodual)

Key topics Joint Task Force

- auxiliaries like heating & air conditioning in modern rolling stock) stock), but referring to actual limits in the standards \rightarrow to be discussed with ERA

		per	per						
		pantograph	pantograph						
		Max	Max						
Solution	System voltage	current	power	Standard					
Current collector	25 kV ac 50 Hz	80 A	2.0 MVA	EN 50367					~
	15 kV ac 16.7 Hz	80 A	1.2 MVA	EN 50367					
	3.0 kV dc	200 A	0.6 MW	TSI ENE					
	1.5 kV dc	300 A	0.5 MW	TSI ENE					
Plug UIC 552	3.0 kV dc	800 A	2.4 MVA	UIC 552	315 A	0.9 MVA	BE nationa	l rule	
	1.5 kV dc	800 A	1.2 MVA	UIC 552	600 A	0.9 MVA			
	1.5 kV ac 50 Hz	800 A	1.2 MVA	UIC 552	600 A	0.9 MVA			
	1.0 kV ac 16.7 Hz, 22 Hz, 50 Hz	800 A	0.8 MVA	UIC 552	600 A	0.6 MVA	ÖBB more	common v	alue
Shore supply plug	400 V ac 50 Hz 3~	63 A	0.044 MVA	EN 50546					
	400 V ac 50 Hz 3~	125 A	0.087 MVA	EN 50546					
	400 V ac 50 Hz 3~	600 A	0.416 MVA	EN 50546					

Short term: main issue: actual requirements on Current at standstill for DC systems only (because of much lower voltages compared to AC systems and thus higher currents to have enough power for

proposal introduced to include requirements for AC-systems in TSI ENE (energy) and L&P (rolling)

A summary of all actual possibilities for charging at standstill <u>& auxiliaries</u> and their limits (2 MW at best):

Key topics Joint Task Force

- 4 existing target systems for power supply from the OCL through the pantographs
- Towards a 5th power supply system: 15kV AC 50 Hz for countries using already 15kV 16.7 Hz (D, A, CH, SE, N, ...)? Increasing the frequency on separate charging facilities has a number of advantages for infrastructure, even regarding the public grid from which the power is sometimes taken, without major consequences on rolling stock, thus reducing overall investment costs.
- Plug solutions have limited power, but can be sufficient for slow charging (≥ 60min), e.g. overnight in stabling yards, using (smart) multiple socket units and offered as a service, with different management, metering and invoicing (per kWh or just per hour).

Example from DB Netze

what about the BE case (mostly 3kV DC)?

Study TML ! Infrabel & SNCB strategy 2040 ! SNCB: "no H₂ please, only EMU (or BEMU)"

Benchmarks Railway electrification in Europe

Percentage geëlektrificeerde lijnen EU (Europese comissie – Transport, 2016)

LU BE NL SE				95% (14/280 km niet-geëlektrificeer 86% (500/3600 km niet-geëlektrific 76% (740/3100 km niet-geëlektrifice
AT IT				72% (1500/5500 km niet-geëlektrific
BG PT				
PL				
ES FR				57% (12000/29000 km niet-geëlektr
FI				
DE				53% (19000/41000 km niet-geëlektr
SK				
ы ын				
RO				
HR				
CZ				
UK				34% (11000/16000 km niet-geëlektr
DK				
EL				
EE				
LV				
LT	_			
IE				
MT	Not applic	table		
CY	Not applic	able		

rd)

ceerd; 2023, reizigersnetwerk: 96%) eerd)

ceerd)

rificeerd)

rificeerd)

Anteil elektrifizierter Strecken im staatlichen Eisenbahnnetz in ausgewählten europäischen Ländern

Remaining non-electrified main lines for passengers (2023):

- L.86 De Pinte Ronse (ca. 29km single track, 3 km double)
- L.122 Melle Geraardsbergen (ca. 29km double track)
- L.58 Gent-Dampoort Eeklo (ca. 15km single track, 3,5km double)
- L.82 Aalst Burst (ca. 11km)
- L.132-134 Charleroi Couvin (ca. 30km single track, 20 double)
 140 / 3600 km = 3,9% of the main network

What will the situation be over 10 years ? An OCL is **built for 80 years !**

Renewal Strategy OCL & substations After 20 years \rightarrow mid-life upgrade substation After 40 years \rightarrow renewal substation →mid-life upgrade OCL After 60 years \rightarrow mid-life upgrade substation After 80 years \rightarrow renewal substation \rightarrow re-electrification with OCL ? Partly ??

When BEMUs and hybrid locomotives are generally used, future simplifications of the OCL network can be considered

For the remaining 5 non-electrified passenger lines in BE:

flexibility in scope and timing of electrification

In the long term:

- Avoid difficult/expensive (re-)electrification (tunnels/turnouts...) \rightarrow Better for punctuality and maintenance costs
- Less power demand on weak spots of the network / public grid \rightarrow Less investment needed just for one rush hour train per day
- Possibility to run through earthed route sections \rightarrow Less impact of work possessions/detours
- electrified >50 years ago)

L132 tunnel with interlaced tracks (and many more obstacles and difficulties)!!

Possibility to avoid non-profitable re-electrifications (e.g. 12,5km branch line Pepinster-Spa, but which did continue a long time ago !;

What part to electrify if not the complete route?

There can be huge differences in cost/km a few km further on a route !

Depends on mainly the terrain for OCL, but on the number of substations (cost/unit, not per km !) to be built and their specific locations with possibilities to connect to the public grid (invest in underground cables or overhead contact lines ?). Here here Or

on L132?

Electrification revisited: never forget the H₂-option (but that's another workshop)

immediate vicinity and even crossing the railway network !

HEMU = BEMU with about 30-40% of the battery energy and a FC-range extender !

- L.132-134 Charleroi Couvin (ca. 50km, the longest non-electrified main line in BE): H₂-pipelines in the
- And close to the start of the non-electrified part, but a bit further from the stabling yards & workshops !!

Key topics

→ EVOLUTION of STANDARDS in TSI ENE:

EN50119:2019: new version ! Transpose changes in IEC 60913

EN50367:2020: amendment 2021 finished on 14/04/2021, waiting for comments and vote; adapted regarding current at standstill

EN50388-1 and 50388-2: still under revision, but including some elements on battery train operation

Solutions

e.g. From the actual legal 300A under 1,5kV DC to 500A

Tübingen(D) 15kV AC – 80A/pantograph – ROCL = Rigid OCL

On the INFRA side

Reinforced OCL – e.g. SNCF RER C (Dourdan) / Depot Sweden (Västerås) / Metro Line 5 India (Delhi)

Profile to be added on an existing catenary to be contact wire and pantograph Reinforced OCL

Profile to be added on an existing catenary to better dissipate the heat at the contact point between the

On the RST side

SNCF SALTO project (nothing new !): It is lowered as soon as the train exceed 8km/h probably work with higher values.

- •At standstill, a mobile copper strip on the pantograph is raised to the OCL
- •Under 1,5kV, the equipment was tested up to 500 A and it worked. It could

On the RST side

"Kasperowski" contact strips (nothing new again ! Still used e.g. in BE, FR and CH on older type of heavy pantographs):

But some problems in winter time with frost on the contact wires: Cu melted because of arcs

On the RST side

Use of Cu inserts in the centre of the contact strips Revue Générale des Chemins de Fer, Decembre 2015, p.15-21

research/projects

to evaluate possibilities of charging from an OCL (rigid or flexible) under real circumstances (identify margins between more common circumstances and rare worst cases)

current at standstill: (on going) tests by RSSB (UK), TU Dresden (D), IfB (Infrabel), RFI, Ricardo (NL/F), etc. \rightarrow EN50367 Annex A3.

Overview of ongoing tests on current at standstill

Tests TU Dresden: see article Elektrische Bahnen 119 (2021) Heft 3, p.100-109

With <u>plain</u> carbon contact strips, depending on the configuration: - 140N static contact force instead of 70N as usual in AC systems - 2 rigid OCLs with a CuAg 120mm² wire, spaced 40 cm apart it is possible to go from the actual legal 80A to 220A ! \rightarrow 3,3 MW under 15kV AC → 5,5 MW under 25kV AC !

 \rightarrow With Cu impregnated carbon contact strips, this can even be improved.

Figure 5.2

Target for mean contact force for F_m for DC 1,5 kV and DC 3,0 kV lines depending on the running speed

Overview of ongoing tests on current at standstill

On contact wire with the reinforcement profile : SNCF test has demonstrated that it works under 1,5kV up to 1000A during 30 minutes with a pantograph used on AGC trains (copper contact strips !)

Overview of ongoing tests on current at standstill

RFI: from the actual legal 200A to 300A under 3kV DC without need to change infrastructure ? We would even need 400A !

Infrabel: tests done in January 2021 on twin contact wires: huge margins towards temperature limits on new flat bottom wires (as required by EN50367 Annex A.3), but far less on worn wires due to contact force imbalances.

SNCF/PRoRail (1,5kV DC networks): more tests to be done soon (divergent results) From previous tests by SNCF:

- Important parameter is the contact surface, more than the contact force
- The more contact points the better
 - Increase the contact force increase the contact surface \rightarrow Favourable

• 2 wires/1 wire or 2 strips/1 strip, it is not sufficient to divide by 2 or 4, test needed

• Increase the number of wire increase the contact surface \rightarrow Favourable (even if spaced a few cm apart)

On the RST side (part 2) – possible future solutions ?

Carbon contact strips with integrated Optic Fibre to actively monitor in real time and under real environmental conditions the temperature of the contact point(s) instead of the current (and not the contact forces to assess dynamic behaviour as already done in e.g. the UK)

- results)
- demand at standstill to protect the infrastructure
- sufficient

 \rightarrow Functional requirement on the critical parameter instead of an indirect one (but difficult to measure and manage, hence all the tests with divergent

 \rightarrow Direct and automatic possibility on the trains themselves to cut power

 \rightarrow Only if necessary when the passive solutions presented above are not

On the INFRA side (part 2) – possible future solutions ?

Monitor the temperature of the contact point(s).

This could be needed to avoid tripping by the circuit breaker feeding the section and send a message to the trains to cut power demand in case more than 1 train is charging, without individually passing the temperature (or current) threshold, and there's too much current demand in total (which in DC would be surprising compared to traction current, but maybe not in AC).

As for the battery cars, trains may have different **battery charging strategies**

- capacity of existing OCLs (300A for 1500 V; 200 A for 3000V; 80 A for AC)
- a) Long time charging cycle: energy taken from OCL per pantograph corresponds to the • b) *Medium* charging cycle: charge in a shorter time, with higher current e.g. for 1500 V DC: 600 A 5 min, then 300 A indefinitely
- c) Quick charging cycle : charge in 15 min e.g. for 1500 V DC: 1000 A 15 min, then 500 A 30 min and 300 A indefinitely
- \rightarrow We need charging management, certainly for multiple trains, considering State of Charge (SoC) of the batteries, timetable, *auxiliaries*, etc. Link to control & command systems to pass coded messages between infra & rolling stock
- \rightarrow Pay attention to high inrush currents when switching on ! Hence 15kV AC 50 Hz !!

Paul TOBBACK Lead Design Engineer & OCL expert

Questions Discussion

Thank you for your attention.

Railways and UIC members are invited to join the **UIC project:**

In partnership with the IEC

"H2TR - Operating hydrogen powered trains"

If interested, please reach out to stefanos@uic.org

Restarting at 11h05

Restarting at 11h05

https://uic.org/events/battery-trains

Online workshop coming up next: September 2021 Call for speakers on stationary energy storage, contact stefanos@uic.org

BATTERY TRAINS

BEST PRACTICE WORKSHOP

ųí¢

Restarting...

Second part 11 h

François Degardin SNCF **Bogdan Vulturescu** Katrin Seeger Siemens **Akos Labady** Eaton

Matthieu Renault Benoît Gachet

SNCF **BATTERY Trains PROJECTS**

François DEGARDIN

- Energy project manager at the Innovation & Research Department of SNCF
- Leader of the regional hybrid train project and biogas feasibility study

Bogdan VULTURESCU

 BEMU project manager at Innovation & Research Department of SNCF

Matthieu RENAULT

- Technical manager at SNCF Voyageurs rolling stock engineering centre
- In charge of the regional hybrid train and regional battery train projects

Benoit GACHET

 Product director high capacity regional trains, Alstom

SNCF BATTERY TRAINS PROJECTS **UIC Workshop Battery trains** 19/05/2021

1 > SNCF Context

2 > Quick overview of diesel hybrid and hydrogen hybrid train projects

3 > Deep dive into AGC battery train refurbishment project

Solutions portfolio

Overview of hybrid train projects

Hybrid train

Principles

Internal combustion engine Removed

Recover, store and reuse braking energy

- + Batteries packed by FORSEE Power
- + Cells : LTO Technology (Toshiba)
- + Power:
- + Total capacity ~ 70 kW.h per ESS
- + Pack voltage : ~ 800 V (nominal)

Energy Storage System

~ 300 kW discharge ~ 500 kW charge per ESS

Next steps

- + 2021 : Modification of 1 train set
- + 2021/2022 : Testings
- + 2023 : Commercial operation (1 train set)
- + 2024 : Go / NoGo for deployment
- + Stakeholders :

Hydrogen train

Principles

- + Power:
- + Liquid cooling
- + Diesel engines and gazole tanks removed
- + Replaced by H2 fuel cells and batteries
- + Batteries recover brake energy, and assume power peaks

Energy Storage System

+ Cells : LTO Technology (SAFT) + Pack voltage : ~ 800 V (nominal) + Total capacity around 100 kW.h per ESS

- ~ 250 kW discharge
- ~ 300 kW charge

Next steps

- + End of march 2021 : Contracts signed (12 new train sets)
- + End of 2023 : Testings
- + End of 2025 : commercial operation (1st train set)
- + Stakeholders :

BATTERY TRAIN AGC BENU PROJECT **UIC Workshop Battery trains** 19/05/2021

Bogdan Vulturescu (SNCF) Matthieu Renault (SNCF) **Benoit Gachet (ALSTOM)**

Fleet: Automotrice Grande Capacité

700 trainsets of the AGC family:

- X76500 class: 163 trains 100% diesel
- B81500 class: 185 trains, dual mode (1.5kVdc & diesel) - 160km/h max, 130/240 places (3/4 coaches)
- B82500 class: 141 trains, dual mode (1500Vdc/25kVac & Diesel) 160km/h max, 130/240 places (3/4 coaches)
- -Z27500 class: 211 trains 100% electrical

- -2004-2011 Supplied by Bombardier at SNCF
- -2022-2032 Midlife maintenance to give potential for another 20 years

1.5kVdc & diesel) coaches) 1500Vdc/25kVac ces (3/4 coaches)

t SNCF ive potential for

Retrofitting principles

motor cars (1M T 2M) □ Train software modification

2 20 years old trainsets retrofitting (build before TSI) – <u>first time in Europe</u>! Diesel propulsion removal and replacement with NMC Li batteries, on both

BEMU features

Autonomy

Traction

Battery full charge time (400kWh)

BEMU coupling

DC/DC converter redundancy

Distance gauge (km) estimation

80km + reserve (20km <u>or</u> 1hour comfort AUXILIAIRES at full power; autonomy corresponding to only 50% of DoD used !)

Identical to original BGC: 160km/h, 1.8MW under catenary & 1MW under nonelectrified line, braking energy recovery (new)

40min (running under catenary or under 25kVAC at standstill) 60min (at standstill under 1.5kVDC)

Inter-BEMU & with the rest of the AGC regional non-modified fleet (BGC and ZGC)

cooling

The driver knows, on live, the "equivalent distance" remaining energy

4 DC/DC converters, each driving 4 traction battery units (50kWh, 800V) – liquid

Energy management

Traction under catenary Main battery charging mode

Main battery charging mode (10-90% of the energy)

Standstill charge (terminal)

Main battery charging mode (10-90% of the energy)

Running under non-electrified line

Traction/braking by battery

Relevant area – infrastructure (without any modification)

- 16600km electrified lines in France
- 5100km non-electrified (or partially electrified) compatible with 80km
 BEMU one journey autonomy (12000km non-electrified lines in France).

100% km electrified lines + 42%
km non-electrified lines

Relevant area – Journey operation analyze

84% of the journey distances are les than 80km.

Relevant area – Journey operation analyze

Operation modification New infrastructure Increase the onboard storage

84% of the journey distances are les than 80km.

Relevant area – daily operation analyze

Daily journey operation analyze

X% of these long daily operation are compatible with our AGC BEMU (eg. shuttle Lyon \leftrightarrow Bourg-en-Bresse daily op).

38% + X% of the daily operation are less than 80km – compatible with our AGC BEMU without any infrastructure/rolling stock modification.

Increase the relevant area – Daily operation analyze

Increase the Relevant area – Daily operation analyze, round trip exemple

Increase the Relevant area – Daily operation analyze, round trip exemple

First use cases – without any infrastructure modification

300 à 1000 tCO2e avoided/year, annual emissions of 180 to 650 cars for only one BGC !

Diesel	Battery train
~ 8,5 kgCO2éq/km	0,5 kgCO2éq/km
6 to 10 kgPM/an	0
1 to 3 tNOx/an	0

Marseille – Aix

Projet milestones

AGC BEMU

Principles 80km of Autonomy **Emission Free**

- + Batteries are mainly charged by catenary but are also used for recovering braking energy.
- + Batteries provide energy for traction and auxiliaries consumption
- + Dual mode train: catenary-battery

Energy Storage System

- + Battery system designed by LECLANCHE + DCDC designed by AT
- + Power per ESS : ~600 kW discharge ~500 kW charge
- + Total capacity ~400 kWh per ESS (~200 kWh used)
- + Reserve capacity ~60kW.h per ESS
- + Pack voltage : ~800 V (nominal)

Next steps

- + 2021 : Notice To Proceed, Kick Off project
- + 2021/2022 : Tests
- + 2023 : Commercial operation (5 train set)
- + 2024 : Go / NoGo for deployment
- + Stakeholders :

Questions Discussion

François Degardin (SNCF) Bogdan Vulturescu (SNCF) Matthieu Renault (SNCF) Benoit Gachet (ALSTOM)

Thank you for your attention.

SIEMENS MIREO PLUS A strong train now becomes even stronger

Katrin Seeger

Siemens Mobility - Head of Battery Technology Commuter & Regional Trains

19.05.2021

The Mireo Plus combines the latest alternative traction systems with the lightest EMU

First battery locomotive

"Wittfeld-Akkumulatortriebwagen"

Start of development of Mireo Plus

H₂

2019

Desiro ML Cityjet eco prototype for ÖBB

2020 Mireo Plus B Ortenau

2018

Test bench operation of fuel cell

2020 Mireo Plus H prototype with DB

SIEMENS

Extensive experience gained during development and testing

Battery System

- Active in design of battery systems for mobility applications since 2009
- Co-design with experienced partners I-ME Actia and Toshiba
- Owner and distributor of the battery systems
- Excellent results from passenger operation with Cityjet eco have confirmed a reliable, robust and long-lasting battery system

Hydrogen System

- Active in H2 systems since 1960s
- Applications in marine business as well as for electrolyzers laid foundation to enhance this technology for mobility applications
- Experienced partner Ballard Power for development of the next generation fuel cell system
- The new fuel cell system has been extensively tested in a system test laboratory for > 2000 hours operation to optimize the interaction between fuel cell and battery system

SIEMENS

 H_2

Desiro ML Cityjet eco in successful passenger service for more than one year

Operated in height difference of 325 m

No restrictions in hot summertime detected due to active cooling

Reduced range due to active heating (65 km)

Routes throughout all regions in Austria

07/2017 Start of development

08/2019 Homologation certificate received

Achievements

- No downtime; high reliability of batteries
- Operating parameters could be optimized
- Validation platform for simulation modeling

09/2019 Passenger operation on 11 different routes throughout Austria

12/2020 Trial operation successfully completed

Mireo Plus – For operation on non electrified lines

High performance: 2 powered bogies

The first project of Mireo Plus is Ortenau network with battery hybrid drive

Start of operation 12/2023

Additional Maintenance for **29.5 years**

Contract award April 2020

Vmax 140 km/h

Catenary-free operation ~80 km

Level platform access 550 mm

The Mireo Plus B meets demanding operational requirements without a continuous overhead catenary

EMU performance

Charging below overhead catenary and quick charge

Low lifecycle costs

The Mireo Plus H is applied in a research project with DB Regio

Page 102 Unrestricted | © Siemens Mobility 2021 | SMO RS CR | May 2021

Project start **23.11.2020**

Vmax 160 km/h

Range 600 km

Rapid refueling in max. 15 minutes

The Mireo Plus H meets demanding operational requirements without an overhead catenary

EMU Performance

Vmax 160 km/h

Low lifecycle costs

SIEMENS

Ambitious targets are achieved through innovative hybrid traction building blocks

Higher power density

Longer lifetime, lower life cycle cost

Higher efficiency

H2 tanks

Modular concept

+10% H2 storage capacity

DC – DC converter

SiC technology (compact, light and low losses)

Hybrid control software

Optimized operation through predictive energy management

~ 5 – 15% energy savings

Powerful battery family

Safe chemical cells

High-power charging

Long lifetime

The Mireo Plus B makes the most of the existing infrastructure

Charging below **existing** 1 overhead catenary (including during travel)

2 travel) + I Battery operation

Charging at the **recharging section** at the intersection (including during

Charging at the recharging 3 **point** at the terminus (charging only while stationary)

Suitable infrastructure is the prerequisite for the efficient use of the Mireo Plus H

2

Refueling process

Vehicle is connected one car at a time to the dispenser: Start of the refueling process

Hydrogen is pumped in: **Refueling process**

3

Rated pressure is reached at the hydrogen tank: End of the refueling process

Case study

Proven in Austria

#years of experience in all weather conditions

Feasible in Belgium

comparable distances comparable height differences (Charlerloi-Couvin) or flat (e.g. Eeklo-Ronse) comparable electrification ratio on most diesel lines

Infrastructure characteristics Belgium

Catenary voltage 3kV DC Maximum 200A during standstill Maximum 2400A in motion A charging possibility will be required in Couvin

Page 107 Unrestricted | © Siemens Mobility 2021 | SMO RS CR | May 2021

Eeklo > Ronse > Eeklo

Questions Discussion

Katrin Seeger Siemens Mobility - Head of Battery Technology Commuter & Regional Trains

Thank you for your attention.

Powering Business Worldwide

Akos Labady Sr. Field Application Engineer, Eaton Electrical/ELX

UIC online workshop, 19May2021

EATON Powering Business Worldwide

products for rolling stock and infrastructure

Electric Energy Storage Options - The Ragone-Plot

Power Density (W/kg)

Eaton offerings for energy storage:

- Lilon based systems
- PbA based systems
- Supercapacitor based systems
- Hybrid supercapacitors

EDLC aka. Supercaps

- Supercaps are symetrical devices comprised by activated carbon electrodes at both anode and cathode sides
- Charging and discharging are electrostatic processes – no chemical reactions
- Cycle life is practically unlimited
- Charge and discharge can be done at the same speed and fashion in seconds
- Voltage drops linerarly by the energy delivered

Lilon batteries

- Lilon batteries are assymetric devices comprising of graphite anodes and metal oxide cathodes (Co, Mn, PO4, Fe, Ni combinations)
- Charge and discharge are electrochemical processes
- Cylce life is limited due to degradation (electrolyte oxidation, Li oxide buildup on anode and cathode surface, structural damage etc.)
- Discharge profile is flat, delivering quasi constant voltage

NEW - LiC aka. Hybrid Supercaps

- Hybrid supercaps are asymetric devices comprise of a Li doped graphite anode and activated carbon cathode
- The charge movement is done electrochemically mainly but in significantly lower depht as in case of the Lilon battery. This results a very high ~500.000x cycle life and very fast responsiveness to high C rate discharges
- As there are no metal oxides used the hybrid supercaps are not posing any risk of fire or thermal runaway

ise of a cathode y mainly Lilon e life charges upercaps

Technology Comparison

Li-ion Battery

+Highest energy density +Lower self discharge – years +Cost per Wh

-High current recharge shortens life

-Higher internal resistance limits power

-Must manage thermal load

-Operating temperature range -10 to +40°C

-Require sophisticated battery management system

-Must oversize to reach longer life times >5 years

-Sustainability – rare earth metals

-Safety to manage

-Cycle life: 3k-10k

Hybrid Supercapacitor

- +High energy density provides fast recharge in minutes +Long life time: 10 years at 20°C
- +Long cycle life: 500k (HS), 250k (HSL)
- +Safety: no thermal runaway, short circuit does not cause fire
- +Simple cell management and charging circuit
- +-15C/+70C operating temperature
- Low self discharge for longer life when paired to primary batteries – individual self discharge in months

-Cost per Wh

Example - overhead line free sectioned line

150ton train
3000VDC line
50km distance between charging lines
50km average speed on main line
300-500kWh stored energy on-board by
Lilon batteries or hybrid supercapacitors

10min 1800kW charge

60min 300kW discharge

ourning source using followed by forming our recharge

20min 900kW charge

Required energy storage per technology

Hybrid Supercapacitor (lithium doped graphite / activated carbon)

Charge voltage = 3800-4000VDC Nominal voltage = 3600VDC Min discharged voltage = 2500VDC Installed capacity = 550kWh Theoretical lifetime = 75MAh or 25million km assuming ideal cell management and moderate temperature level

Size = 36m3Weight = 25-30tons

No actual product displayed

NMC

(lithium / nickel manganese cobalt oxide)

Charge voltage = 3800-4000VDC Nominal voltage = 3200VDC Min discharged voltage = 2700VDC Installed capacity = 2160kWh Theoretical lifetime = 68MAh or 20million km assuming ideal cell management and moderate temperature level Size = 16m3Weight = 20-25tons

Advantageus Use Cases

Hybrid SUPERCAP

- Short distances to cover with stored energy <50km sections
- In case high current available for charging
- In case safety is critical tunnels/subways
- In case braking energy is more to utilize (downhills)
- In case higher acceleration rates are appreciated (uphills, urban transport)
- When wider temperature either cold or hot is an issue

Li-Ion BATTERY

 Can cover 100+km with one charge More cost efficient solution over 50km May be overnight charged to save the number of charging sections and extend battery life Available solution as per 2021

Questions Discussion

Akos Labady Sr. Field Application Engineer, Eaton Electrical/ELX

Thank you for your attention.

Stay in touch with UIC: www.uic.org Sin Ø O You Tube **#UlCrail**

Slides and recording to be made available on the event page https://uic.org/events/battery-trains

Call for speakers is open for a workshop on stationary energy storage systems, please contact stefanos@uic.org

Thank you for your attention.

