

Program

10.00 – 10.15 Introduction

Barbara Chevalier – CEO CFL Multimodal Philip Van den bosch – UIC

10.15 - 11.00 Presenting the current trends on Combined Transport in Europe

Trends & evolutions on CT in Europe

Philip Van den bosch – Deputy Director Freight - UIC

The Role of Combined transport in current logistics operations and how it has changed (or not) Eric Feyen – Technical Director - UIRR

The new handbook on Combined Transport

Eric Lambert – Former chairman Combined Transport Group - UIC

11.00 – 11.30 Combined Transport in a new business context

Presentation of the new study on direct shipment between rail and waterborne transport *UIC & Louis Descamps - University of Antwerp*

Role of combined transport from a customer perspective *Tobia Mazzi - Transportation Purchasing Senior Manager - Arcese Trasporti*

11.30 – 12.00 Combined Transport in a new legislative and political context

Presentation of the latest legislative initiatives *Jacques Dirand - Head of Rail Freight Services - CER*

Sttakeholder debate on the new legislative era

Combined transport in the new Eastern Europe reality Andrius Sinkevičius - Business Development - LTG Cargo

12.00 – 12.15 Conclusions

Developments and opportunities of direct transshipment between rail and waterborne transport

Louis Descamps

Maritime and Logistics Management 12 October 2023

Agenda

- Problem definition
- Research design
- Typology
- Methodology

- Challenges and opportunities
- Results
- Conclusion
- Recommendations

Problem definition

- UIC International Union of Railways
 - Direct transshipment between rail and waterborne transport
- Intermodal sea-rail terminals
 - Intermodal loading units (containers, swap bodies, semi-trailers)
 - Connection between ports and rail network
- Quay tracks \rightarrow potential barrier to port operations?

Research design

- **Purpose**: developments and opportunities direct transshipment \rightarrow seaports & inland ports
- Distinction between direct, semi-direct and indirect transshipment

Research questions

- What are the opportunities and challenges of direct transshipment?
- Can lead times be reduced when using direct transshipment?
- Can the total port cost be reduced because of the direct transshipment method?

Typology

- 3 types sea-rail transshipment
- Distribution based on various factor
 - Dwell time
 - Storage area
 - Vehicle movements
- Sea ports vs. Inland ports

	Direct	Semi-direct	Indirect
Dwell time	0 days	< 2 days	> 2 days
Storage area	No	Yes	Yes
Vehicle movements	1	Multiple	Multiple

Methodology

- Literature review: transshipment from ship to train
- Interviews with inland ports (2)
- Cases
 - Sea ports: Hamburg, Antwerp and Gothenburg
 - Inland ports: Genk and Lille
- Port model (chain cost model University of Antwerp)

Port of Lille

- General manager
- 20 trains Bordeaux, Toulouse, Marseille, Aix-en-Provence
- Direct transshipment containers rail-barge?
- No demand \rightarrow Rennes-Lille-Antwerp?
 - Reach stackers → mix containers and swap bodies
 - Waiting times

Port of Genk

- Operations manager
- No direct transshipment containers rail-barge?
 - o <-> bulk transport (rice Mars factory)

Port model

- New York → Hamburg
- Port of Hamburg
 - Direct transshipment containers
 - Total port cost and port time optimal

Transshipment	Direct	Semi-direct	Indirect
Dwell time	0 days	2 days	5 days

Opportunities and challenges

Opportunities

- Less handling material
- Less transfer costs
- Less congestion
- Less use of space

Challenges

- High infrastructure cost
- Synchronisation between the two transport modes
- Technically difficult to implement

Results

- Variety

 development of sea-rail transshipment in ports
- Port of Hamburg and Gothenburg
 - Semi-direct transshipment
 - Rail facilities within the terminal area
- Port of Antwerp-Bruges
 - Indirect transshipment
- Inland ports Genk en Lille
 - Direct transshipment of bulk goods

	Direct	Semi-direct	Indirect
Sea ports	,	Port of Hamburg, Port of Gothenburg	Port of Antwerp- Bruges
Inland ports	Port of Genk Port of Lille (dry bulk)	/	/

Conclusion

- Direct transshipment of containers
 - European seaports \rightarrow no direct transshipment method of containers
 - \circ Opportunities for implementation rise increase \rightarrow increase rail share
 - Opportunity to reduce waiting times

Recommendations

- Separate legal framework
- Definition 'direct transshipment'

Thank you for your attention.

