Facing an INCREDIBLE INCREASE in ELECTRICITY PRICES

THE CONTEXT OF WAR AND NUCLEAR UNAVAILABILITY GENERATES A PRICE SHOCK IN 2022

INCREASE the IMPACT of ENERGY SAVING PROGRAM

OVERVIEW OF ENHANCEMENTS SFERA Edition 2

INTERNATIONAL UNION OF RAILWAYS

Tibor Weidner/Theo Vis/Sébastien Dislaire

SFERA Edition 2 Workshop / 10/10/2022

Summary

The input of early adopters enhanced Edition 1 features.

New functions are included to:

- Improve the user experience
- Facilitate implementation
- Enhance performance

SFERA improves upon interoperability

The input of early adopters enhanced Edition 1 features.

User group

Early adopters of the SFERA protocol were able to detect bugs in Ed. 1

Modifications were proposed through Change Requests issued by the User Group.

Main subjects handled:

- Implementation of the MQTT/JWT protocol;
- Review of the handshake process; -
- Alignment with ERTMS/ATO Stopping Points logic.

The draft IRS Edition 2 was also reviewed by the User Group.

Thank you for your input !

Change requests after Edition 1

There were 101 change requests after the 1st edition

Comments during Draft review

231 comments received during the review of the draft IRS Edition 2

New functions are included to: Improve the user experience Facilitate implementation Enhance performance

Occupation and status of other trains

The Related Train Information is the way to exchange information between trackside and onboard about the occupation and status of other trains which are on the path of the "own train" and which are driving in front or behind and are using the same tracks as the "own train".

A DAS may use this information to update its driving advice, or drivers can use their expertise to interpret the displayed information and change their driving style.

The most important parts of the data concerning the related trains are:

- and the position within this segment.
- on the given piece of the segment.

- Segment Claim: Gives the position of a train in terms of segment (SP_ID)

- Claim Type: Gives an indication of the status of route setting for this train

Highlights on SFERA Changes

Addition of information on occupation and status of other trains (in front or behind)

Example of Routelint (ProRail)

Timetable mode

SFERA edition 2 introduces the "Driving Mode" parameter to inform trackside about the capability of the DAS or the mode currently used. Driving modes can be for example "Readonly", "Inactive", GoA1, GoA2, GoA3, etc.

In particular, the "Timetable" mode provides the timetable information that is historically provided "on paper" (time objectives in the different stations) and gives minimal information to the driver.

The "Timetable" mode would be used when the data source for driving advice calculation (accelerating, coasting, braking...) and ETA is unavailable or of insufficient quality.

Timetable mode

Advised speed in temporary constraints

In the edition 2 of SFERA advised speed over a certain area can be transmitted from ground to board as an "AdvisedSpeed" in a temporary constraint.

the location of overtaking.

This speed should be included in the driving profile and advice.

A range (min/max) or a speed can be sent together with a reason code.

For example, to overtake a conflicting (slower) train that has (nearly) reached

New realtime data in the status report

In the edition 1 the status report includes few real-time information:

- Position
- Speed
- Adhesion conditions -

In the edition 2 elements are added so a TMS and the IM energy management systems could benefit from.

Added are:

- from the overhead contact line or delivered (negative) when negative during regeneration
- available in the battery
- -

Measured and current voltage: Voltage at the pantograph and current voltage taken

Battery level: on battery powered trains, the available power is linked to the power

Maximal power that can be delivered form energy source available on-board (in kW)

Network specific parameters

In several places of the data structure, it is possible to include so-called Network-Specific Parameters (NSPs).

Those are parameters that haven't been standardised for interoperable use in SFERA, but may be used in bilateral agreements between trackside and on-board DAS. They can include for instance some data that is only relevant in a specific IM area, or they can be used to test an additional function before submitting a Change Request to include the relevant data structure in SFERA.

Examples of places where NSPs have been added:

- Timing Points -
- **General JP Information**
- Status Report
- Tracking and Braking Force Curve -
- Signal and Physical Characteristics of signals
- Train Characteristics

Example

<TimingPointConstraints TP_latestArrivalTime="2023-09-04T12:17:00Z" TP_StopSkipPass="Stopping_Point">

<TimingPointReference>

```
<TP_ID_Reference TP_ID="Zandvoort"/>
```

</TimingPointReference>

<TimingPointConstraints_NSPs>

<NetworkSpecificParameter name="crowdcontrol_message"</pre>

value="Due to formula 1 grandprix crowd is expected,

please inform driver on other side that departure is possible"> </NetworkSpecificParameter>

</TimingPointConstraints_NSPs>

</TimingPointConstraints>

SFERA improves upon interoperability

Interoperability

Two TSIs cover IT interoperability between the IMs TMS and the RU: CCS TSI for direct communication with the ATO-OB; TAF/TAP TSI for communication with the RU backoffice.

SFERA aims:

Covering additional business cases

Building upon existing TSI « Building blocks »

Aiming for integration of SFERA in future TSIs

Providing an answer for short term needs of the sector regarding driver communication

Mutualization potential for cost-conscious implementations

Perpetuate innovations

SFERA improves upon interoperability: ERTMS/ATO

SFERA Ed. 1 included the entire ERTMS/ATO data model (CCS TSI Subset-126)

Main objective: mutualized data production for DAS and ATO

SFERA Ed. 2 was updated with current CCS TSI adaptations

SFERA improves upon interoperability: TAF/TAP TSI

- TAF/TAP TSI covers interoperability between IM and RU IT systems Common Interface (CI) to establish technical links -Exchange of standardized TAF/TAP xml messages -
- Possible exchange of non-TAF/TAP messages

Scope of IM/RU TAF/TAP TSI messages: Path allocation and coordination - Traffic management Train Performance Management

TAF/TAP TSI: Common Interface

The CI will be used by SFERA between the IM and RU Trackside servers.

Why?

- Deployed by all major Ims
- Deployed by many RUs
- « Off the shelf » CIs available _
- Protocol appropriate for server to server communication

Impact on SFERA Ed.2: minor adaptation of message headers.

N

RU

TAF/TAP TSI: Locations

- For example:
- « Train 12345 has been located at Wien-Hbf at 12h04 »

RUs could be interested in linking TAF/TAP and SFERA data as they supplement each other:

- In the RU backoffice;
- In the DAS-OB.

TAF-TAP Path Details, based on locations

SFERA Journey Data based on distance

TAF/TAP messages refer to primary and subsidiary locations (or PLC/SLC).

« Train 7891 is ready for departure from Köln-Hbf/Signal101 at 12h04 »

TAF/TAP TSI: Train Ready, Interruption, Delay Cause

TAF-TAP TSI defines standard messages between the RU backoffice and IM/TMS for incident management:

- Train Ready / Not Ready
- Train Running Interruption

On the RU side, one major obstacle is obtaining the information from the driver, which is not covered by the TAF-TAP TSI:

- → SFERA includes the payloads for transmission from DAS-OB to ground
- → The RU backoffice

SFERA includes the TAF-TAP XML payloads for the DAS-OB/RU DAS-TS link

Stay in touch with UIC: www.uic.org Sin Ø Su Tube **#UlCrail**

Thank you for your attention.

A connected Driver Advisory System for CFL

Amel SMAILJI CFL Infrastructure

Mohammad SABBAGHIAN Cubris

SFERA DAS Workshop Paris 10/10/2022

Choice of the DAS solution/supplier

Focus on our strengths : CFL is only a small railway with limited resources but with relatively modern systems.

- extension of our existing traffic management system setting-up a track-side with close integration into our TMS seamless integration into our existing TMS ARAMIS
- SFERA compliant solution

willingness to be innovative and first mover

o from c-DAS to ATO

c-DAS as a steppingstone in our strategy towards ATO have the trackside evolve on the basis of the 2022 TSI \rightarrow ATO over ETCS (GoA 2) by 2025

Scenario 1

13/10/2022

3

Scenario 2

13/10/2022

Scenario 3

13/10/2022

5

Setup

13/10/2022

RESTREINT

Infrastructure Data

Data modelling not just for DAS

Also the way to ATO

13/10/2022

	THALES
	🦲 25.01.2017 15:24
ea	₽ ×
rrent Activity:	
Site Data Update	e August 2016
lierarchy List	
rea	Locked _
CTC 2 Gdańsk	
GDG	
GDP	=
	Locked
CTC 6 Działdowo	
DZ	Locked
🖉 GR	Locked
DIO	
□ RB	*
Update	New Group
Lock	Unlock
Create	Delete
rameter	8 ×
Region Overview	/iew
Region Overview	
est_RO	Act
	iviti
	es
	eg
ize:	9
x 0000	6000 S
Version Map:	1 DBV: 4
omments:	2
	II
dited by:	ë
	<u></u>
Apply	Export
, when a	LAPOIL
Create	Delete
Create	Delete

7

THANK YOU!

Amel SMAILJI

Project Engineer Digital Transformation at CFL Infrastructure

E-Mail: <u>amel.smailji@cfl.lu</u>

Mohammad SABBAGHIAN

Software Engineer at Cubris

E-Mail: <u>m.sabbaghian@cubris.dk</u>

Quick overview on the Luxembourgish railways

Challenges of implementation

Infrastructure Data and Modelling

Infrastructure data is one of the three pillars of a c-DAS system

• Additional acquisition of a central infrastructure database ARAMIS-I

modelling of infrastructure in ARAMIS-I generates RailML files for c-DAS TS (segment profiles) integration into our existing ARAMIS environment

- Different sources of data used for modelling in ARAMIS-I main data provided in "plans schématiques de signalisation" in pdf format (PSS) other various sources (ETCS projecting data tables, ARAMIS data, CFL GIS platform, etc.)
- Integrity and Validation of Infrastructure Data
 c-DAS Signal and Switch positions, platform lengths reference kilometer points GPS coordinates

13/10/2022

11

Infrastructure Data and Modelling

- Ο
- Ο

Ο

13/10/2022

12

c-DAS CFL UI

• Setup Screen

driver enters Driver ID and Train ID c-DAS OB automatically obtains data for generating a journey profile from ARAMIS (timetable, segment profiles)

Crow you wanted with a state of the state of

				<u><=</u>
dentification	Trair	Configu	rations	♥ 19 .il 93% ■ 19:56
3612	TRAIN CLASS	RAILtab ug: 6720 hf: Luxembourg enutzer: sc		: 04.12.2019
5833	NUMBER OF EMU			
LUXEMBOURG	MAXIMUM SPEED			
KLEINBETTINGEN	TRACTION			20
6	WEIGHT			Sur Sur
		Å		
CON	FIRM		i	YQ
			À Ω	

오 💐 🖘 🖌 12% 🖻 10:32

Back Office View c-DAS train drive

13/10/2022

14

gerade unterwegs

New insights into the applicability of SFERA for ATO over ETCS L1LS or Class B EuroZUB in Switzerland

SOB ATO pilot project

Markus Wachter

DAS Workshop presenting IRS 90940 Edition 2 UIC Headquarters Paris

October 10, 2022

Agenda

- Introduction
- Current situation SOB ATO pilot project and potential SFERA
- SOB contribution for the IRS 90940 Edition 2
- New insights modelling of lineside signalling with SFERA
 - Example modeling the end of signalled speed restrictions with SFERA signal constraints according to Swiss national rules
 - Challenge dealing with expected signal aspects in SFERA for optimization versus current aspects in the real world
- Conclusion & outlook

Introduction

SOB (Schweizerische Südostbahn AG) is a private railway company (IM and RU).

Introduction

SOB (Schweizerische Südostbahn AG) is a private railway company (IM and RU).

ATO test areas:

Current lines with necessary infrastructure data for ATO-Trackside

Introduction

- SOB is carrying out an ATO pilot project over ETCS L1 Limited Supervision, including ClassB EuroZUB.
- SOB sees potential in SFERA for transmitting correct signalling and line-speed data to ATO-OB according to swiss national operating rules.
- At the SFERA User Group Conference on September 2021, SOB presented its first findings on the applicability of SFERA, and submitted change requests for IRS 90940 Edition 2.
- In the meantime, the study for an ATO solution for swiss lines with lineside signalling has been completed.
- New insights have also been gained regarding SFERA. The study's findings and solution approaches, including SFERA application, could also be useful for an eventual extension of the TSI for ATO GoA2 for lines without ETCS Cab Signalling (after TSI 2022).

gerade unterwegs

ATO GoA 2 over ETCS L1 LS System Overview

gerade unterwegs

ATO GoA 2 over ETCS L1 LS System Overview

SOL SÜDOSTBAHN

gerade unterwegs

Allowed speed for a train depending on the signalling technology

Lineside signalling Switzerland (ETCS L1 LS)

Close relationship between permitted line speeds, signalled speeds, signal positions and vehicle braking performance (brake percentage):

Proceed line-speed Train length Distant ю Distant & signal Curve main Signal UND \vdash ΗØ ⊢● HO \vdash -**-**ΗØ led proceed with speed restriction due to approaching a diverging junction defined with the End of train driven over diverging turnouts AND visual contact to open signal Vmax national rules Route ю Distant Distant & Curve Signal main Signal ΗØ -0 -0 Signalled proceed with speed restriction at due to shortened braking distance to signal with danger/stop aspect Vmax national rules Route STOP

Cab signalling (ETCS L2 FS)

No relationship between projected static speeds, virtual positions signals (End of Movement Authority) and vehicle braking performance (brake percentage):

SOL SÜDOSTBAHN

gerade unterwegs

Allowed speed for a train depending on the signalling technology

Lineside signalling Switzerland (ETCS L1 LS)

Close relationship between permitted line-speeds, signalled speeds, signal positions and vehicle braking performance (brake percentage):

Cab signalling (ETCS L2 FS)

No relationship between projected static speeds, virtual positions signals (End of Movement Authority) and vehicle braking performance (brake percentage):

Conflicts ETCS L1LS with TSI drafts ATO over ETCS GoA2

 One of the purposes of the SOB pilot project was to investigate the limits of the TSI drafts ERTMS/ATO on conventional lines with ETCS L1 LS.

There are several conflicts.

- TSI 2022 with ATO only works on lines with ETCS Full Supervision and the not yet existing ETCS-OB Baseline >3.6 with ATO functions (AD-Mode, DMI, etc.)
- SFERA can help to define a fast upward compatible solution for ATO as part of an efficient migration strategy to the target state full ERTMS-Rollout in Europe

SS: Subset

FFFIS: Form Fit Function Interface Specification FIS: Functional Interface Specification RADN: route table with line speeds per train category FDV: Fahrdienstvorschriften (national operational rules)

SOI SÜDOSTBAHN

gerade unterwegs

Current situation speed information for ATO and Potential SFERA

SOB contribution for the IRS 90940 Edition 2

Temporary slow-speed sections with logic lineside signals

CR for modelling revocation signal at temporary speed restrictions (similar logic as Packet 66 from Subset 026 ERTMS/ETCS language):

SOB contribution for the IRS 90940 Edition 2

Visual Contact Point

CR for modelling a signal update in relation to visual contact by the drive to the real-world signals. The proposed visual contact point is implemented in SFERA Edition 2 with "*CancelPreviousSignal*" under Signal Information, with a "*DistanceBeforeSignal*" attribute in meters (equals visual contact). Modelling in Switzerland is already possible at the TMS topology level

New insights the applicability of SFERA for ATO GoA2

Modeling the end of signaled speed restrictions with SFERA signal constraints according to Swiss national rules

The determination of the end of a signalled speed limit has several criteria in Switzerland:

- length of the train
- switches in the route
- visual contact with the next signal

Specifying several SFERA signal objects per one physical signal makes modelling the individual conditions possible. The overlapping SFERA signal information complies with the swiss operating rules.

New insights the applicability of SFERA for ATO GoA2

Challenge dealing with expected signal aspects in SFERA for optimization versus current aspects in the real world

- The "Signal" elements in SFERA are meant to submit signal aspects that can be expected in the future. They are
 not used for submitting actual signal aspects to the train (can differ from the expected aspect). The purpose from
 SFERA is to deliver data for the optimization, not to be a cab signalling system.
- When running ATO GoA 2 with an ATP/ATC system with incomplete signalling information of the route (like ETCS L1 LS or Class B), the exact handling expected aspects in SFERA must be defined. At the latest, when passing the distant signal, the expected status must be the same as the actual status of the signal. Otherwise, this can lead to wrong behaviour of ATO or too fast speed advice in DAS-Mode.
- ATO should be able to stop with SFERA data before a red signal. However, SFERA is not a safety system; the driver must always observe the current lineside information (signals, speed boards etc.) and national operating rules.
 Perception technology for signal aspect detection could also help for more redundancy.
- An option would be to send the current states in addition to the expected ones (if TMS/ATO-TS has the information). A "status bit" open/closed would be sufficient for the current signal status. However, this would require an IRS 90940 change request. However, this is not absolutely necessary if TMS and ATO-TS handle SFERA correctly, especially with regard JP-Updates...

New insights the applicability of SFERA for ATO GoA2

Challenge dealing with expected signal aspects in SFERA for optimization versus current aspects in the real world

Possible handling of SFERA signal data (expected) so that optimization and real signal states for ATO are not in conflict:

The exact calculation of the expected state is a task of TMS using various data sources, including the control system interlocking real-time data, train position and forecast.

Signalaspects real world

Conclusion & outlook

- SFERA Edition 2 already provides a good communication protocol for ATO GoA2 or C-DAS-O on Swiss lines with lineside signals. The "digital" modeling of analog lineside signals and resulting speed limits in compliance with operational rules is possible.
- SFERA allows upward compatibility to ERTMS/ATO once a rail line and running trains are equipped with ETCS Cab Signalling.
- SOB remains an active member of the SFERA User group and will continue to provide experiences, opinions and ideas for future releases.
- Joint between SFERA and X2Rail is good development in the standardization of communication protocols between trackside and onboard applications.
- Coordinated ATO GoA 2 and DAS solutions for legacy lines make sense. SOB can share experience for this task.

SOE SÜDOSTBAHN

gerade unterwegs

Contact

Markus Wachter Consultant Rail Systems Emch+Berger AG Bern (on behalf of SOB) Mobile +41 79 894 24 84 <u>Markus.Wachter@emchberger.ch</u> Matthias Kühni Project Manager ATO Schweizerische Südostbahn AG Direct +41 58 580 72 69 <u>Matthias.Kuehni@sob.ch</u>

DAS / SFERA Ed.2 In-Person Workshop

Connected Driver Advice System[C-DAS]Peak Power Demand[PPD]

Robert Yee 10th October 2022 UIC Paris

- TM [or information] the catalyst, DAS the enabler
- Ad-hoc timing changes can be efficiently communicated to the driver for execution (i.e. info. reach). The two-way flow of information, DAS to TM (i.e. info richness).
- Industry commissioned C-DAS PoC, S-DAS trains delayed on average 6%. After C-DAS advice "intervention" this dropped to 1.6%. Sample size 1300 trains, 4 weeks
- Realistically 30-50% of delays can be mitigated

CDAS - Layered INformation eXchange [LINX]

- Infrastructure Manager's [IM] unified message hub to enable data to be exchanged between various TMS and IM's conventional systems + external systems [national timetables, stock & crew, PIS]
- Reliable, real-time data from 3rd party TM

© 2022 TTG Energymiser by Signature Rail. All rights reserved.

• Four TM real-time/operational

- 1. Route Diversion
- 2. Stopping Pattern change
- 3. Scheduled Timing change
- 4. Junction-Scheduler[™] #3 timing change but not TM, fully automated

o <u>One</u> TM pre-trip

Very Short Term Plan changes. Timetables added < 48h

- Proof of Technology Pilot of Connected DAS
- Operator is a long term TTG S-DAS/N-DAS partner
 - Inter-urban EMUs, Dedicated C-DAS test trains
 - Several days, multiple headcodes
- Next stage is cross platform s/w integration into TMS
- Following ex. is a Line Change

• Four tracks in the test section; UML, URL, DML, DRL

Test train-section was booked on Up Main Line.

Cholsey	09:38:00	09:38:00	30	RL
Goring & Streatley	09:42:30	09:42:30	30	RL
Pangbourne	09:46:30	09:46:30	30	RL
Tilehurst	09:50:30	09:50:30	30	RL
Reading West Jn	09:53:30	09:53:30	0	FVL
Reading High Level Jr	09:55:00	09:55:00	0	FVL
Reading	10:06:00	10:06:00	720	DML
Kennet Bridge Jn	10:20:30	10:20:30	0	ML
Twyford West	10:23:30	10:23:30	0	RL
Twyford	10:24:30	10:24:30	0	RL
Ruscombe	10:25:30	10:25:30	0	ML
Maidenhead	10:29:00	10:29:00	0	ML
Slough	10:33:00	10:33:00	0	ML
West Drayton	10:38:00	10:38:00	30	ML
Stockley Junction	10:40:00	10:40:00	0	ML
Heathrow Airport Jn	10:40:30	10:40:30	0	ML

Raw timetable - in the CDAS until 09:47:33 [near Pangbourne]

[TRC]	20220831 09:47:30	EcoDriver.	-1.100335	-1.10044											
[JRNYDAT	20220831 09:47:31	18.798	20220831	201	31	76	33	1				1	51.48839	-1.10023	
[TRC]	20220831 09:47:31	Approachi	09:47:31	18798.3	8.65038		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:31	Approachi	09:47:31	18798.3	8.65038		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:31	Approachi	09:47:31	18798.3	8.65038		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:31	EcoDriver.	-1.100234	-1.10034											
[JRNYDAT	20220831 09:47:32	18.813	20220831	201	31	76	37	1				1	51.48835	-1.10013	
[TRC]	20220831 09:47:32	Approachi	09:47:32	18813.4	8.50222		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:32	Approachi	09:47:32	18813.4	8.50222		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:32	Approachi	09:47:32	18813.4	8.50222		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:32	EcoDriver.	-1.100132	-1.10023											
[JRNYDAT	20220831 09:47:33	18.822	20220831	201	31	76	39	1				1	51.48831	-1.10003	
[TRC]	20220831 09:47:33	Approachi	09:47:33	18822.2	8.63443		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:33	Approachi	09:47:33	18822.2	8.63443		Pangbourr	387 4 Car	09:48:40						
[TRC]	20220831 09:47:33	Approachi	09:47:33	18822.2	8.63443		Pangbourr	387 4 Car	09:48:40						
[MSG]	20220831 09:47:33	Application	n trigger up	date journe	y because o	of : Timeta	ble update								
[TRC]	20220831 09:47:33	EcoDriver.	-1.100025	-1.10013											
[MSG]	20														
[ROUTEID	(C)							R	OUT	E D		RSIC	IN		
[ROUTESE	777														
[INFO]	20220831 09:47:35	18.831	Overlappin	ig speed iim	it 137 at 78	3.739 KMS.	Appiying sp	eea limit 1	61						
[INFO]	20220831 09:47:35	18.831	Overlappin	g speed lim	it 137 at 79	9.142 kms.	Applying sp	eed limit 1	61						
[TRC]	20220831 09:47:35	TSRs are sa	ame												
[ERROR]	20220831 09:47:35	18.831	-1	TT	Unable to	find details	of Didcot	West End.R	emoving it	from the ti	metable.				
[TTID]	1824743														
TTMODE	Theorem Inter														

TT before change

Cholsey	09:38:00	09:38:00	30	RL
Goring & Streatley	09:42:30	09:42:30	30	RL
Pangbourne	09:46:30	09:46:30	30	RL
Tilehurst	09:50:30	09:50:30	30	RL
Reading West Jn	09:53:30	09:53:30	0	FVL
Reading High Level Jr	09:55:00	09:55:00	0	FVL
Reading	10:06:00	10:06:00	720	DML
Kennet Bridge Jn	10:20:30	10:20:30	0	ML
Twyford West	10:23:30	10:23:30	0	RL
Twyford	10:24:30	10:24:30	0	RL
Ruscombe	10:25:30	10:25:30	0	ML
Maidenhead	10:29:00	10:29:00	0	ML
Slough	10:33:00	10:33:00	0	ML
West Drayton	10:38:00	10:38:00	30	ML
Stockley Junction	10:40:00	10:40:00	0	ML
Heathrow Airport Jn	10:40:30	10:40:30	0	ML

TT after change

	Cholsey	09:38:00	09:38:00	30	
	Goring & Streatley	09:42:30	09:42:30	30	RL
	Pangbourne	09:46:30	09:46:30	30	
	Tilehurst	09:50:30	09:50:30	30	RL
	Reading West Jn	09:53:30	09:53:30	0	FVL
	Reading High Level Jn	09:55:00	09:55:00	0	FVL
	Reading	10:06:00	10:06:00	720	DML
	Kennet Bridge Jn	10:20:30	10:20:30	0	ML
	Twyford West	10:23:30	10:23:30	0	RL
	Twyford	10:24:30	10:24:30	0	RL
	Ruscombe	10:25:30	10:25:30	0	ML
	Maidenhead	10:29:00	10:29:00	0	ML
	Slough	10:33:00	10:33:00	30	ML
	Dolphin Jn	10:34:00	10:34:00	0	RL
	Langley	10:35:00	10:35:00	0	RL
1	lver	10:36:30	10:36:30	0	RL
	West Drayton	10:38:00	10:38:00	30	RL
	Stockley Junction	10:40:00	10:40:00	0	ML
	Heathrow Airport In	10:40:30	10:40:30	0	MI

- We were also able to successfully;
 - Add and remove station stops during a trip
 - Adjust scheduled timings during a trip
 - Inject new short-term timetables
 - Cancel trains
- O What next?
 - Peak Power Demand
 - Broadcast messages / Degraded running
 - Real-time feedback loop

- Purpose of this study to investigate the use of DAS to reduce TGV tractive power during known Peak Power Demand [PPD] periods.
- Peak production of power [intermittent] is both environmentally unfriendly and cost ineffective.
- These PPD periods only occur on certain days for limited times. During these balancing periods the power draw of the fleet can be reduced by a pre-defined target.

Three Phased Study

- 1. Feasibility & manual calculations
- Optimisation algorithm developed Simulation 100+ headcodes
- 3. On-board trials, Enhanced Algorithm

- Our approach doesn't require modification of the Energymiser/Opticonduite algorithm.
- Only the timings are modified so this approach is easier to implement.

PPD 2. ALGORITHM & SIMULATIONS BEFORE & AFTER PPD

hour

Laptop mimicking PPD Server

- Feedback information on how to achieve peak power optimisation
- Re-calculate timing points

Ad-hoc WiFi network

Coast	Next: Bordeaux-St-Jean	ETA: 08:56:00 07:38:27
252 c 248		
_		
199.83 km		
V – 248.0 km/h, át – 0 s. Lateness – 0 s		
-	τάρ	Man AID 0.0

 Driver follows advice – injected with PPD timings, which are updated from the PPD Server

~2.2 MWh energy saved during PPD

Thank You!

SFERA IMPLEMENTATIONS: PRORAIL/NS

Pim Sierhuis (Prorail – Pim.Sierhuis@proail.nl) / Theo Vis (NS - Theo.Vis@ns.nl)

INTERNATIONAL UNION OF RAILWAYS

SFERA Edition 2 Workshop / 10/10/2022

- Working SFERA service

- Journey Profiles
- Segment Profiles
- Related Trains


```
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SFERA_G2B_EventMessage>
   <MessageHeader SFERA version="2.00" message ID="6e76025b-6134-476f-b767-476d7271e9ff" timestamp="2022-10-09T09:18:54Z" sourceDevice="</pre>
       <Sender>0084</Sender>
       <Recipient>1084</Recipient>
   </MessageHeader>
   <G2B EventPayload>
       <JourneyProfile JP_Status="Valid" JP_Version="1665296524739">
           <TrainIdentification>
                <otn_id>
                    <Company>1084</Company>
                    <OperationalTrainNumber>5623</OperationalTrainNumber>
                    <StartDate>2022-10-09</StartDate>
                </otn_id>
            </TrainIdentification>
            <SegmentProfileList SP_VersionMajor="1" SP_VersionMinor="1665152164" SP_Direction="Nominal" SP_ID="531 2597V 34.7 T">
                <SP Zone>
                    <IM_ID>0084</IM_ID>
                </SP Zone>
                <TimingPointConstraints TP_StopSkipPass="Stopping Point" TP_Information="None">
                    <TimingPointReference>
                        <StoppingZoneReference identifier="Ut 4 SINGLE"/>
                    </TimingPointReference>
                    <StoppingPointInformation departureTime="2022-10-09T05:50:00Z"/>
                </TimingPointConstraints>
           </SegmentProfileList>
           <SegmentProfileList SP_VersionMajor="1" SP_VersionMinor="1665152164" SP_Direction="Nominal" SP_ID="531 2575L 34.6 T">
                <SP Zone>
                    <IM_ID>0084</IM_ID>
               </SP Zone>
           </SegmentProfileList>
           <SegmentProfileList SP_VersionMajor="1" SP_VersionMinor="1665152164" SP_Direction="Nominal" SP_ID="531 2571P 34.6 T">
                <SP Zone>
```


Dutch specifics and challenges

- Infra data: two models schematic and geographic - Geographic data not always uptodate - Mitigated, but not perfect yet
- Feedback loop by working system
- Simplified technical interface

 - Websockets for Journey Profiles and Related Trains - REST calls for Segment Profiles
- Some specials for the Netherlands - No real TMS that calculates conflict-free traffic plans - Algorithm for stopping point locations
- - ... see our documentation

Approach

- Incremental approach
- Work on problems that are actually there
- Together
- Open mentality -

Working systems are the only real measure of progress

Call for participation

- So we'd like to develop our systems further in collaboration with you!

- Are we on the right track?
- What other data would you like?
- me an e-mail at pim.sierhuis@prorail.nl
- Come visit our stand at the fair
 - Demo's with live data
 - Discuss details of data

- We prepared sample data (JP's, SP's, RT's) from our systems: send

- JP's and RT's are live updated
- SP's are a static representation of the infrastructure
- Two levels of planning, with their own data services that need to be combined to a JP
- Only Related Trains use live train positions and infra status (switch positions etc)

CURRENT SFERA Implementation @ The Netherlands

NEXT STEPS

PRORAIL

NS

Actuaal Material

How does it look

- Easier to interpret
- Information in the relevant position
- Better insight into actual situation
- Allows for additional future functionality, i.e. TSB, safety designations,
- Drivers can better anticipate upcoming situations and act accordingly
- Increased safety & punctuality, cost savings
- Android Tablet and **Electronic Time Display** (Build in)

Example Segment Profile

Status ÖBB SFERA implementation

ÖBB / UIC-SFERA Group

From Status Quo to AZL Next Level (AZL NL)

AZL NL – AZL Next Level

Further development of the AZL contents as well as implementation of an independent driving time calculation

AZL – Adaptive Zuglenkung

Development and implementation of a KE/KL, an extended forecast calculation, distribution logic / data transmission as well as visualization

Connection of TRAKSYS with operation-optimized route construction

AZL preliminary stage – Driving recommendation with Text SMS

 First implementation of a driving recommendation with output via the train radio Implementation and output of INFO - SMS via the train radio

TLP gelb (Adressatenkreis)

Objective of today`s appointment:

To show the contents and effect of the SFERA interface, as well as KE/KL¹ planned in the TMS² including the extended forecast calculation (first step) as well as the independent travel time calculation (second step).

Agenda

1	About AZL to AZL Next Level	4
2	View into the workshop: FZR calculation logic	11
3	Visualisation on the traction unit	13
4	AZL Architecture Overview	15

Today`s Stand

The current forecast uses stored reduction potentials (travel and stop time reserves). It does not consider the infrastructure used and the actual vehicle characteristics.

(1) Taken from train planning tool

To achieve the goals AZL NL is a necessary intermediate step in AZL

Sophisticated implementation of the (fully) automatic KE/KL

Extensive **implementation of the FZR¹ component** (including linear optimization)

ANL

(1) Driving time calculator

Intermediate step within the framework of the AZL

Auvanceu forecasting at the Th

- (1) KE/KL phase 1 if possible, incl. consideration of aS/ISBE
- (2) Based on extended forecast calculation
- (3) Based on program code that is not yet released in ÖBB-TMS

TLP gelb (Adressatenkreis)

Advanced forecasting at the TMS

The specific extension of the track plan node model as well as the aggregation of the rolling stock are also needed for the stand-alone FZR component.

TLP gelb (Adressatenkreis)

Activation of the TMS internal "Advanced Forecasting".

Basic travel time calculation is fit, further fine tuning necessary.

The calculated speeds (in the train running profile) can be used for a driving recommendation calculation.

All dispositive measures with effect on the FZR must be considered.

Not shown, but necessary for AZL NL:

- Consideration of influences from train protection systems
- Calculation of ATO Journey Profiles

- TMS-internal travel time calculation based on the stored infrastructure and vehicle data.
- Along a route different (passage) times have to be met.
- Determination of the "suitable" speed is done iteratively.

(1) Including interaction between journey and occupancy accounting at the TMS

TLP gelb (Adressatenkreis)

Agenda

1	About AZL to AZL Next Level	4
2	View into the workshop: FZR calculation logic	11
3	Visualisation on the traction unit	13
4	AZL Architecture Overview	15

existence AZL AZL NL

Possible calculation methods of the stand-alone FZR component

Method	How it works	Possible use
Technical / control driving time	Extending the restrictive speed profile taking into account infrastructure and vehicle characteristics	Determination of minimum travel time
Travel time with sectional surcharges	Travel time calculation taking into account sectional percentage travel time extensions.	Determination of approximate speed profile
Driving time with restricted maximum speed	Travel time calculation based on the extended forecast calculation, "hitting" predefined target travel times while capping the maximum speed (with/without coasting)	FZR for timetable construction / departure actual FPL
Travel time with minimum energy requirement	Running time calculation that provides the lowest energy consumption for a train path while complying with (sectional) target running times	FZR for FE and disposition / KL

TLP gelb (Adressatenkreis)

Agenda

1	About AZL to AZL Next Level	4
2	View into the workshop: FZR calculation logic	11
3	Visualisation on the traction unit	13
4	AZL Architecture Overview	15
5	Prospect	17

AZL NL

Visual relief through intersected display

No more "transfer power" necessary: the driver sees directly the speed to be driven

mixed timetable data (vision view)

Mockup

Langsamfahrstelle

IC 1791 (1)

Befehl (1)

Wien Atzgersdorf

8.8

8.2

5.5

Reporting of

reduced braking

and acceleration

power by the

train

60 km/h von km 7.0 bis km 6.0

159

0

•

16:05:00

16:12

16:11

16:10

16:08

16:08

16:07

16:07

16:06

16:05

16:05

+4

120

50

120

80

60

80

infraDOAS

Separate display of static book timetable, driving recommendation, commands and la

There is only one source of information for the Tfzf with the current departure timetable.

Illustration on the right based on ADL 4.0 of the SBB

TLP gelb (Adressatenkreis)

Agenda

1	About AZL to AZL Next Level	4
2	View into the workshop: FZR calculation logic	11
3	Visualisation on the traction unit	13
4	AZL Architecture Overview	15

AZL Architecture (Top-Level)

- (1) slow speed points
- (2) aS (exceptional broadcasts)
- (3) train preparation
- TLP gelb (Adressatenkreis)

- (4) timetable
- (5) authentication/authorization
- (6) driving recommendation

IMPLEMENTATION ROADMAP **SNCF** Réseau

INTERNATIONAL UNION OF RAILWAYS

Sébastien DISLAIRE

SFERA Edition 2 Workshop / 10/10/2022

Aims of SNCF Réseau implementation roadmap

Capture advantages of DAS : punctuality, capacity, safety, efficiency and quality of service

Establishing the trackside for 100% of trains to operate under DAS or ATO : - Integrating with RU projects and DAS suppliers

Establishing the stepping stones towards ATO implementation

Constraints and Deployment strategy

We aim to offer end-to-end journey description to drivers

We will rely on the different operating modes SFERA provides to overcome two major constraints :

- Sufficient data for DAS is not currently available on the whole network -

A significant part of the network is not supervised by traffic managers (low traffic lines)

IT Implementation strategy

Aim: maximizing common components for Timetable, ATO and DAS data.

2 protocols for output to the RUs :

- SFERA for Timetable and then DAS
- CCS TSI for ERTMS/ATO

Architecture Concept (studies ongoing)

Stay in touch with UIC: www.uic.org Sin Ø Su Tube **#UlCrail**

Thank you for your attention.

STATUS OF SFERA MEMBERS **DAS and SFERA Implementation**

INTERNATIONAL UNION OF RAILWAYS

DAS/SFERA Workshop, Paris 10/10/2022

The SFERA Working Group

UIC Project

Trafikverket

DB Netz Update

DB Netz prepares to send SFERA messages in the next years:

 C-DAS-C for existing use cases ("Green Functions" of DB Netz) and Related Train Information (Farsight/Rearview) coming in 2023/2024
C-DAS-O based on dispatching decisions and location/speed messages coming after 2025

3. continuous C-DAS-O messages and energy messages not yet decided

Infrabel

- We have upgraded our TMS (based on SBB RCS): live since April 2022: • This is the technical back-bone/pre-requisite for DAS
- DAS-planning & implementation update:
 - Delivering data for trials with S-DAS
 - C-DAS-C implementation on schedule: Use out of the box RCS-ADL (which calculates C-DAS-C messages) as a) base
 - b) Develop simple web-app to receive C-DAS-C messages using SFERA over MQTT
 - Ensure sufficient data quality to start live test runs in 2023 **C**) Investigate possibilities to use RCS to output train path envelope/journey a)
 - Starting discussions with RUs and DAS-suppliers on how to implement C-DAS-O:
- profile
 - Directly to device on-board in IM-train setup (via MQTT). b) Delivering data using SFERA-format by our Data Exchange to the RUs. C) NOTE 1 - This can be by Common Interface (if requested). NOTE 2 - Data can also be handled using a server offered by a DASsupplier as SaaS to some RUs.

Planning DAS (TMS-ADL) 2022-2023

SBB Plan for 2023

SBB plans to develop a C-DAS O solution in 2023 SFERA ed 2.0 fits to the whole set of SBB's requirements A first set of functionalities has been determined for the first version

 Some requirements are not yet available automatically on the TMS side, they are left aside)

C-DAS O mode with its existing solution, without investing too much ressource on the tablet.

Thanks to the AdvisedSpeed structure (new in ed. 2), SBB can go straight to

1. FUTURE DAS PRESENTATION FOR DRIVERS

2. SNCF specific aspects IN THE SFERA FORMAT

SNCF wishes to implement the SFERA format to be able to interact with others as soon as possible.

At the end of the year 2022, SNCF will be able to recreate data for the DAS that will be clean enough to have the DAS module working properly. In the same time, SNCF benefits from this change to implement the SFERA format.

SNCF will not use the entire perimeter of the norm at the beginning because the communication between the IM and the RU is not ready yet. Moreover, SNCF add some tags needed by the DAS module which are specific for the French Railway Network. These tags are presented on the right side of the presentation.

Specific tags for SNCF

DIRECTION DE LA TRACTION – DIVISION OMPC

Trafikverket

Trafikverket – IM in Sweden

Ongoing pilot with C-DAS in cooperation with a few different RUs

- Not using SFERA at this point
- Both passenger and freight trains

• Established for a few stretches where a RTTP (Real Time Traffic Plan)/"Journey Profile" is delivered 24/7 from a digitalized time-distance graph This autumn the first steps towards the SFERA standard have been taken • The messages Journey Profile (JP) and Segment Profile (SP) will be used to replace the format of the existing messages in the pilot JP and SP will at the beginning contain the data to achieve a similar

- functionality as of today
- More data in the JP and SP will be added as the work continues
- Will in the beginning use the integration platform already established

• Using the Common Interface will be a later step From the result of the work done during this autumn Trafikverket will in the beginning of next year establish a more specific plan for the work 2023

Stay in touch with UIC: www.uic.org Sin Ø Su Tube **#UlCrail**

Thank you for your attention.

SFERA and X2Rail4 Joint work towards TSI 2026

DAS SFERA Workshop 10/10/2022

TSI 2022 situation

SFERA complementary to ATO over ETCS for covering all train operating use cases

SFERA

- Enhance C-DAS and GoA1 operations
- Provide the driver with additional information in GoA1/2
- Usable on all ATP Systems (incl. ETCS L1LS)
- Simple, scalable, moderate investments
- Promotes precative preparation of data and systems for ATO

ETCS & ATO over ETCS

SFERA roadmap vision update

One standard for ATO and C-DAS in Europe.

The standards are merged

Single standard phase

One single standard ensures interoperable DAS and ATO operations on all lines in Europe and all usage scenarios

ATO Migration & ETCS L1LS / C-DAS

Provisioned architecture GoA1-4, including DAS

Joint work SFERA – Shift2Rail

One standard for ATO and C-DAS in Europe.

Application data

- Alignment on the data content
 - Mission Profile
 - Train data sets
 - Journey Profiles
 - Segment Profiles
 - Static layers
 - Dynamic layers
- Alignment on common Use Cases
- Alignment on the data format
 - binary
 - XML
 - Other

Communication Session Management principles

- - area
 - Crossing borders

 - Change of CAB
- Support of specific Use Cases (e.g.)

 - - off.

• Alignment on common Use Cases • Normal operation in fitted

Coupling and uncoupling

 Application installed on tablets associated to a driver Automatic powering on and

Lower Layers of communication

- Alignment on common Use Cases
- Full compliance with FRMCS set of documents
- Introduction of layers currently used in SFERA (e.g. MQTT)

Target date: 12/2023

Questions?

Thank you !

