Facing an INCREDIBLE INCREASE in ELECTRICITY PRICES

THE CONTEXT OF WAR AND NUCLEAR UNAVAILABILITY GENERATES A PRICE SHOCK IN 2022

Energie Carbone Voyageurs – Christophe GUEUDAR-DELAHAYE – 10/10/2022
Billions € IMPACT on ENERGY BUDGET

Market price for 2023 is 20 times more expensive than 18 months ago.

Extreme price volatility and lack of forward liquidity.

2021 – before Crisis: 50 € /Mwh

2022 – Q4: 920 € /Mwh

2023 - Annual: 1400 € /Mwh

x 20

Energie Carbone Voyageurs – Christophe GUEUDAR-DELAHAYE – 10/10/2022
INCREASE the IMPACT of ENERGY SAVING PROGRAM

MOBILIZING the STAFF Communication program

BOOST ENERGY SAVING on Trains
- Action 1
 ➢ Total use of S-DAS program on all trains
 - Action 3
 - Action 4
 - Action 5
 ➢ C-DAS development
 - Action 7
 - Action 8
 - …

ACCELERATE ENERGY SAVINGS on buildings
OVERVIEW OF ENHANCEMENTS

SFERA Edition 2

Tibor Weidner/Theo Vis/Sébastien Dislaire
Summary

The input of early adopters enhanced Edition 1 features.

New functions are included to:
- Improve the user experience
- Facilitate implementation
- Enhance performance

SFERA improves upon interoperability
The input of early adopters enhanced Edition 1 features.
User group

Early adopters of the SFERA protocol were able to detect bugs in Ed. 1 Modifications were proposed through Change Requests issued by the User Group.

Main subjects handled:
- Implementation of the MQTT/JWT protocol;
- Review of the handshake process;
- Alignment with ERTMS/ATO Stopping Points logic.

The draft IRS Edition 2 was also reviewed by the User Group.

Thank you for your input!
Change requests after Edition 1

There were 101 change requests after the 1st edition

- 36 Proposed by WG
- 54 Proposed by User Group
- 11 Alignment with ATO over ETCS SUBSETs
- 40 Bugs (includes SUBSETs alignment)
- 54 Enhancements
- 7 New developments
Comments during Draft review

231 comments received during the review of the draft IRS Edition 2

- Comments by WG: 162
- Comments by User Group: 69

- General: 100
- Technical: 109
- Editorial: 22

Bar chart showing comments by category and subcategory.
New functions are included to:
Improve the user experience
Facilitate implementation
Enhance performance
Occupation and status of other trains

The Related Train Information is the way to exchange information between trackside and onboard about the occupation and status of other trains which are on the path of the “own train” and which are driving in front or behind and are using the same tracks as the “own train”.

A DAS may use this information to update its driving advice, or drivers can use their expertise to interpret the displayed information and change their driving style.

The most important parts of the data concerning the related trains are:

- **Segment Claim**: Gives the position of a train in terms of segment (SP_ID) and the position within this segment.

- **Claim Type**: Gives an indication of the status of route setting for this train on the given piece of the segment.
Highlights on SFERA Changes

Addition of information on occupation and status of other trains (in front or behind)

Example of DB

1. Betrachteter/Eigener Zug
2. Freie Blöcke Vorschubbereich
3. Durch den vorausfahrenden Zug belegte Blöcke
4. Zuggattung und Durchschnittsgeschwindigkeit des vorausfahrenden Zuges
5. Freie Blöcke Rückschubbereich
6. Durch den nachfahrenden Zug belegter Block
7. Zuggattung und Durchschnittsgeschwindigkeit des nachfahrenden Zuges

Source: DB Cargo / Knorr-Bremse

Example of Routelint (ProRail)

Source: ProRail
Timetable mode

SFERA edition 2 introduces the “Driving Mode” parameter to inform trackside about the capability of the DAS or the mode currently used. Driving modes can be for example “Readonly”, “Inactive”, GoA1, GoA2, GoA3, etc.

In particular, the “Timetable” mode provides the timetable information that is historically provided "on paper" (time objectives in the different stations) and gives minimal information to the driver.

The “Timetable” mode would be used when the data source for driving advice calculation (accelerating, coasting, braking…) and ETA is unavailable or of insufficient quality.
Timetable mode

Timetable mode would be used when the data source for driving advice calculation (accelerating, coasting, braking...) and ETA is unavailable or of insufficient quality.

Examples of data:
- Gradients
- Speed limits and signals
- Traction power characteristics
- Fine geocoordinates of the track

ETA

Driving Advice

S-DAS / C-DAS
Advised speed in temporary constraints

In the edition 2 of SFERA advised speed over a certain area can be transmitted from ground to board as an "AdvisedSpeed" in a temporary constraint.

For example, to overtake a conflicting (slower) train that has (nearly) reached the location of overtaking.

This speed should be included in the driving profile and advice.

A range (min/max) or a speed can be sent together with a reason code.
New realtime data in the status report

In the edition 1 the status report includes few real-time information:
- Position
- Speed
- Adhesion conditions

In the edition 2 elements are added so a TMS and the IM energy management systems could benefit from.

Added are:

- Measured and current voltage: Voltage at the pantograph and current voltage taken from the overhead contact line or delivered (negative) when negative during regeneration
- Battery level: on battery powered trains, the available power is linked to the power available in the battery
- Maximal power that can be delivered form energy source available on-board (in kW)
Network specific parameters

In several places of the data structure, it is possible to include so-called Network-Specific Parameters (NSPs).

Those are parameters that haven't been standardised for interoperable use in SFERA, but may be used in bilateral agreements between trackside and on-board DAS. They can include for instance some data that is only relevant in a specific IM area, or they can be used to test an additional function before submitting a Change Request to include the relevant data structure in SFERA.

Examples of places where NSPs have been added:

- Timing Points
- General JP Information
- Status Report
- Tracking and Braking Force Curve
- Signal and Physical Characteristics of signals
- Train Characteristics
Example

```xml
<TimingPointConstraints TP_latestArrivalTime="2023-09-04T12:17:00Z"
TP_StopSkipPass="Stopping Point">
  <TimingPointReference>
    <TP_ID_Reference TP_ID="Zandvoort"/>
  </TimingPointReference>
  <TimingPointConstraints_NSps>
    <NetworkSpecificParameter name="crowdcontrol_message"
      value="Due to formula 1 grandprix crowd is expected, please inform driver on other side that departure is possible"/>
  </TimingPointConstraints_NSps>
</TimingPointConstraints>
```
SFERA improves upon interoperability
Interoperability

Two TSIs cover IT interoperability between the IMs TMS and the RU:
- CCS TSI for direct communication with the ATO-OB;
- TAF/TAP TSI for communication with the RU backoffice.

SFERA aims:

- Covering additional business cases
- Building upon existing TSI « Building blocks »
- Aiming for integration of SFERA in future TSIs

Providing an answer for short term needs of the sector regarding driver communication
- Mutualization potential for cost-conscious implementations
- Perpetuate innovations
SFERA improves upon interoperability: ERTMS/ATO

SFERA Ed. 1 included the entire ERTMS/ATO data model (CCS TSI Subset-126)

Main objective: mutualized data production for DAS and ATO

SFERA Ed. 2 was updated with current CCS TSI adaptations
SFERA improves upon interoperability: TAF/TAP TSI

TAF/TAP TSI covers interoperability between IM and RU IT systems:
- Common Interface (CI) to establish technical links
- Exchange of standardized TAF/TAP xml messages
- Possible exchange of non-TAF/TAP messages

Scope of IM/RU TAF/TAP TSI messages:
- Path allocation and coordination
- Traffic management
- Train Performance Management
TAF/TAP TSI: Common Interface

The CI will be used by SFERA between the IM and RU Trackside servers.

Why?
- Deployed by all major Ims
- Deployed by many RUs
- « Off the shelf » CIs available
- Protocol appropriate for server to server communication

Impact on SFERA Ed.2: minor adaptation of message headers.
TAF/TAP TSI: Locations

TAF/TAP messages refer to primary and subsidiary locations (or PLC/SLC). For example:

« Train 12345 has been located at **Wien-Hbf** at 12h04 »
« Train 7891 is ready for departure from **Köln-Hbf/Signal101** at 12h04 »

RUs could be interested in linking TAF/TAP and SFERA data as they supplement each other:
- In the RU backoffice;
- In the DAS-OB.

TAF-TAP Path Details, based on locations

SFERA Journey Data based on distance
TAF/TAP TSI: Train Ready, Interruption, Delay Cause

TAF-TAP TSI defines standard messages between the RU backoffice and IM/TMS for incident management:
- Train Ready / Not Ready
- Train Running Interruption

On the RU side, one major obstacle is obtaining the information from the driver, which is not covered by the TAF-TAP TSI:
→ SFERA includes the payloads for transmission from DAS-OB to ground
→ The RU backoffice

SFERA includes the TAF-TAP XML payloads for the DAS-OB/RU DAS-TS link
Stay in touch with UIC:

www.uic.org

#UICrail

Thank you for your attention.
A connected Driver Advisory System for CFL

Amel SMAILJI
CFL Infrastructure

Mohammad SABBAGHIAN
Cubris

SFERA DAS Workshop
Paris
10/10/2022
Choice of the DAS solution/supplier

Focus on our strengths: CFL is only a small railway with limited resources but with relatively modern systems.

- **extension of our existing traffic management system**

 setting up a track-side with close integration into our TMS
 seamless integration into our existing TMS ARAMIS

- **SFERA compliant solution**

 willingness to be innovative and first mover

- **from c-DAS to ATO**

 c-DAS as a steppingstone in our strategy towards ATO
 have the trackside evolve on the basis of the 2022 TSI
 → **ATO over ETCS (GoA 2) by 2025**
Data modelling not just for DAS

Also the way to ATO
THANK YOU!

Amel SMAILJI
Project Engineer Digital Transformation at CFL Infrastructure
E-Mail: amel.smailji@cfl.lu

Mohammad SABBAGHIAN
Software Engineer at Cubris
E-Mail: m.sabbaghian@cubris.dk
Quick overview on the Luxembourgish railways

- **628** km of tracks
- **70** train stations and stops
- **1,000** train-runs per day
- **49 %** cross-border traffic
- **free** of charge public transport
- Increase in passengers +85%
Challenges of implementation
Infrastructure Data and Modelling

Infrastructure data is one of the three pillars of a c-DAS system

- Additional acquisition of a central infrastructure database ARAMIS-I
- Modelling of infrastructure in ARAMIS-I generates RailML files for c-DAS TS (segment profiles) integration into our existing ARAMIS environment

- Different sources of data used for modelling in ARAMIS-I
- Main data provided in “plans schématiques de signalisation” in pdf format (PSS)
- Other various sources (ETCS projecting data tables, ARAMIS data, CFL GIS platform, etc.)

- Integrity and Validation of Infrastructure Data
- c-DAS Signal and Switch positions, platform lengths reference kilometer points
- GPS coordinates
Infrastructure Data and Modelling

- “PSS” plans to ARAMIS-I
 modelling of infrastructure in ARAMIS-I

- Different sources of data used for modelling in ARAMIS-I
 main data provided in “plans schématiques de signalisation” in pdf format
 other various sources (ETCS projecting data, ARAMIS data, CFL GIS platform, etc.)

- Establishing a work flow for data maintenance
c-DAS CFL UI

- **Setup Screen**

 driver enters Driver ID and Train ID

 c-DAS OB automatically obtains data for generating a journey profile from ARAMIS (timetable, segment profiles)
Back Office View c-DAS train drive

13/10/2022
New insights into the applicability of SFERA for ATO over ETCS L1LS or Class B EuroZUB in Switzerland

SOB ATO pilot project

Markus Wachter

DAS Workshop presenting IRS 90940 Edition 2
UIC Headquarters Paris

October 10, 2022
Agenda

- Introduction
- Current situation SOB ATO pilot project and potential SFERA
- SOB contribution for the IRS 90940 Edition 2
- New insights modelling of lineside signalling with SFERA
 - Example modeling the end of signalled speed restrictions with SFERA signal constraints according to Swiss national rules
 - Challenge dealing with expected signal aspects in SFERA for optimization versus current aspects in the real world
- Conclusion & outlook
Introduction

SOB (Schweizerische Südostbahn AG) is a private railway company (IM and RU).
SOB (Schweizerische Südostbahn AG) is a private railway company (IM and RU).

ATO test areas:
Current lines with necessary infrastructure data for ATO-Trackside
Introduction

- SOB is carrying out an ATO pilot project over ETCS L1 Limited Supervision, including ClassB EuroZUB.

- SOB sees potential in SFERA for transmitting correct signalling and line-speed data to ATO-OB according to Swiss national operating rules.

- At the SFERA User Group Conference on September 2021, SOB presented its first findings on the applicability of SFERA, and submitted change requests for IRS 90940 Edition 2.

- In the meantime, the study for an ATO solution for Swiss lines with lineside signalling has been completed.

- New insights have also been gained regarding SFERA. The study's findings and solution approaches, including SFERA application, could also be useful for an eventual extension of the TSI for ATO GoA2 for lines without ETCS Cab Signalling (after TSI 2022).
ATO GoA 2 over ETCS L1 LS System Overview

ATO: Automatic Train Operation
ATP: Automatic Train Protection (ETCS or national system)
EL: Euroloop
CTC: Centralized Traffic Control
FB: Fixed Data Balise
GFM: Gleisfreimeldeanlage (Track vacancy detection: Track Circuit or Axle Counter)
LEU: Lineside Electronic Unit
OB: On Board
OD: Odometry (Distance & Speed Measurement)
RCS: Rail Control System, Current Dispatching/TMS System from SBB (also used by SOB)
TB: Transparent Data Balise
TCMS: Train Control and Management System
TMS: Traffic Management System
TOPO: Topology-Database
TS: Trackside

Journey-Profile (Timetable)
Segment-Profiles (Infrastructure Data)
Status Reports

Network-wide management of rail traffic
Train-itinerary
Dispatching dependencies
Route setting
Train-run tracking (incl. locked route)
Element states
Messages
Route setting
Track Occupancy
Element states

Request / commands
Route setting
Track Occupancy
Element states

Network-wide Infrastructure Data

ATO-OB
ATO-OB
EL
FB
TB
Traction Brake

TCMS
ATP
OD

LEU
GFM
Turnouts

Interlockings

ATO-TS

Signals

CTC (ILTIS)

TOPO

TMS (RCS)
ATO GoA 2 over ETCS L1 LS System Overview

ATO: Automatic Train Operation
ATP: Automatic Train Protection (ETCS or national system)
EL: Euroloop
CTC: Centralized Traffic Control
FB: Fixed Data Balise
GFM: Gleisfreimeldeanlage (Track vacancy detection: Track Circuit or Axle Counter)
LEU: Lineside Electronic Unit
OB: On Board
OD: Odometry (Distance & Speed Measurement)
RCS: Rail Control System, Current Dispatching/TMS System from SBB (also used by SOB)
TB: Transparent Data Balise
TCMS: Train Control and Management System
TMS: Traffic Management System
TOPO: Topology-Database
TS: Trackside

Currently SOB ATO: Subset 126
Potential: SFERA protocol

Journey-Profile (Timetable)
Segment-Profiles (Infrastructure Data)
Status Reports

ATO-OB

ATO-TS

Signals

TCMS

ATP

OD

LEU

GFM

Turnouts

Interlockings

TMS (RCS)

Network-wide management of rail traffic

Train-itinerary
Dispatching dependencies

CTC (ILTIS)

Train-run tracking
(incl. locked route)
Element states

Request / commands
Route setting

Messages
Route setting
Track Occupancy
Element states

Network-wide Infrastructure Data

Turnouts

LEU

OD

TMS

TB

EL

Location reference

Movement Authority & Speed Profile per Signal Aspect

10.10.2022
SOB ATO pilot project @ DAS Workshop presenting IRS 90940 Edition 2
UIC Headquarters Paris
7
Allowed speed for a train depending on the signalling technology

Lineside signalling Switzerland (ETCS L1 LS)
Close relationship between permitted line speeds, signalled speeds, signal positions and vehicle braking performance (brake percentage):

- Signalled proceed with speed restriction due to approaching a diverging junction defined with the lowest turnout speed in the junction
- End of train driven over diverging turnouts AND visual contact to open signal

Cab signalling (ETCS L2 FS)
No relationship between projected static speeds, virtual positions signals (End of Movement Authority) and vehicle braking performance (brake percentage):
Allowed speed for a train depending on the signalling technology

Lineside signalling Switzerland (ETCS L1 LS)
Close relationship between permitted line-speeds, signalled speeds, signal positions and vehicle braking performance (brake percentage):

Cab signalling (ETCS L2 FS)
No relationship between projected static speeds, virtual positions signals (End of Movement Authority) and vehicle braking performance (brake percentage):
Conflicts ETCS L1LS with TSI drafts ATO over ETCS GoA2

One of the purposes of the SOB pilot project was to investigate the limits of the TSI drafts ERTMS/ATO on conventional lines with ETCS L1 LS.

There are several conflicts.

- TSI 2022 with ATO only works on lines with ETCS Full Supervision and the not yet existing ETCS-OB Baseline >3.6 with ATO functions (AD-Mode, DMI, etc.)
- SFERA can help to define a fast upward compatible solution for ATO as part of an efficient migration strategy to the target state full ERTMS-Rollout in Europe

SS: Subset
FFFIS: Form Fit Function Interface Specification
FIS: Functional Interface Specification
RADN: route table with line speeds per train category
FDV: Fahrdienstvorschriften (national operational rules)
Current situation speed information for ATO and Potential SFERA

Current limits SOB ATO pilot project

Subset 126
Missing data elements for mapping signalling constraints and national train categories defining the line speeds

ETCS L1 LS (Subset 026 incl. Packet 44 EuroZUB)
Track inputs Static Speed Profile and Movement Authorities do not always the allowed speed according to national operating rules.
GoA1 task: background supervision dangerous points, no cab signalling

Possible ATO solution for lineside signalling

SFERA
Transmission of correct line speed and signalled restrictions to ATO-OB according to swiss national rules. Based on real-time process data from the CTS/interlocking and topology data at level TMS

Replaced by

ETCS/ EuroZUB
Still ATP for ATO
Supervision & position data (read balises & odometry)

ATO-OB
ATO-TS
SFERA protocol
TMS
SOB contribution for the IRS 90940 Edition 2

Temporary slow-speed sections with logic lineside signals

CR for modelling revocation signal at temporary speed restrictions (similar logic as Packet 66 from Subset 026 ERTMS/ETCS language):

SFERA-Handbook in Edition 2 extended the signal application rules for modelling the behaviour at revocation signal:

SRERA “digital world”

Real world temporary signals and resulting operational rules or driver
SOB contribution for the IRS 90940 Edition 2

Visual Contact Point

CR for modelling a signal update in relation to visual contact by the drive to the real-world signals. The proposed visual contact point is implemented in SFERA Edition 2 with "CancelPreviousSignal" under Signal Information, with a "DistanceBeforeSignal" attribute in meters (equals visual contact). Modelling in Switzerland is already possible at the TMS topology level.
New insights the applicability of SFERA for ATO GoA2

Modeling the end of signaled speed restrictions with SFERA signal constraints according to Swiss national rules

The determination of the end of a signalled speed limit has several criteria in Switzerland:
- length of the train
- switches in the route
- visual contact with the next signal

Specifying several SFERA signal objects per one physical signal makes modelling the individual conditions possible. The overlapping SFERA signal information complies with the swiss operating rules.

SFERA Elements:
New insights the applicability of SFERA for ATO GoA2

Challenge dealing with expected signal aspects in SFERA for optimization versus current aspects in the real world

- The "Signal" elements in SFERA are meant to submit signal aspects that can be expected in the future. They are not used for submitting actual signal aspects to the train (can differ from the expected aspect). The purpose from SFERA is to deliver data for the optimization, not to be a cab signalling system.

- When running ATO GoA 2 with an ATP/ATC system with incomplete signalling information of the route (like ETCS L1 LS or Class B), the exact handling expected aspects in SFERA must be defined. At the latest, when passing the distant signal, the expected status must be the same as the actual status of the signal. Otherwise, this can lead to wrong behaviour of ATO or too fast speed advice in DAS-Mode.

- ATO should be able to stop with SFERA data before a red signal. However, SFERA is not a safety system; the driver must always observe the current lineside information (signals, speed boards etc.) and national operating rules. Perception technology for signal aspect detection could also help for more redundancy.

- An option would be to send the current states in addition to the expected ones (if TMS/ATO-TS has the information). A "status bit" open/closed would be sufficient for the current signal status. However, this would require an IRS 90940 change request. However, this is not absolutely necessary if TMS and ATO-TS handle SFERA correctly, especially with regard JP-Updates…
New insights the applicability of SFERA for ATO GoA2

Challenge dealing with expected signal aspects in SFERA for optimization versus current aspects in the real world

Possible handling of SFERA signal data (expected) so that optimization and real signal states for ATO are not in conflict:

The exact calculation of the expected state is a task of TMS using various data sources, including the control system interlocking real-time data, train position and forecast.
Conclusion & outlook

- SFERA Edition 2 already provides a good communication protocol for ATO GoA2 or C-DAS-O on Swiss lines with lineside signals. The “digital” modeling of analog lineside signals and resulting speed limits in compliance with operational rules is possible.

- SFERA allows upward compatibility to ERTMS/ATO once a rail line and running trains are equipped with ETCS Cab Signalling.

- SOB remains an active member of the SFERA User group and will continue to provide experiences, opinions and ideas for future releases.

- Joint between SFERA and X2Rail is good development in the standardization of communication protocols between trackside and onboard applications.

- Coordinated ATO GoA 2 and DAS solutions for legacy lines make sense. SOB can share experience for this task.
Contact

Markus Wachter
Consultant Rail Systems
Emch+Berger AG Bern (on behalf of SOB)
Mobile +41 79 894 24 84
Markus.Wachter@emchberger.ch

Matthias Kühni
Project Manager ATO
Schweizerische Südostbahn AG
Direct +41 58 580 72 69
Matthias.Kuehni@sob.ch
DAS / SFERA Ed.2
In-Person Workshop

Connected Driver Advice System [C-DAS]
Peak Power Demand [PPD]

Robert Yee
10th October 2022
UIC Paris
- TM [or information] the catalyst, DAS the enabler
- Ad-hoc timing changes can be efficiently communicated to the driver for execution (i.e. info. reach). The two-way flow of information, DAS to TM (i.e. info richness).
- Industry commissioned C-DAS PoC, S-DAS trains delayed on average 6%. After C-DAS advice “intervention” this dropped to 1.6%. Sample size 1300 trains, 4 weeks
- Realistically 30-50% of delays can be mitigated
CDAS - Layered INformation eXchange [LINX]

- Infrastructure Manager’s [IM] unified message hub to enable data to be exchanged between various TMS and IM’s conventional systems + external systems [national timetables, stock & crew, PIS]
- Reliable, real-time data from 3rd party TM
CDAS - 5 LEVELS OF INTERVENTION
CURRENT VERSION

- **Four** TM real-time/operational
 1. Route Diversion
 2. Stopping Pattern change
 3. Scheduled Timing change
 4. Junction-Scheduler™ #3 timing change but not TM, fully automated

- **One** TM pre-trip
 - Very Short Term Plan changes. Timetables added < 48h
Proof of Technology Pilot of Connected DAS

Operator is a long term TTG S-DAS/N-DAS partner
 - Inter-urban EMUs, Dedicated C-DAS test trains
 - Several days, multiple headcodes

Next stage is cross platform s/w integration into TMS

Following ex. is a Line Change
CDAS LINE CHANGE
ORIGINAL TIMETABLE & CDAS UPDATE

- Four tracks in the test section; UML, URL, DML, DRL
- Test train-section was booked on Up Main Line.

<table>
<thead>
<tr>
<th>Station</th>
<th>Time Original</th>
<th>Time CDAS</th>
<th>Delay</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholsey</td>
<td>09:38:00</td>
<td>09:38:00</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Goring & Streatley</td>
<td>09:42:30</td>
<td>09:42:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Pangbourne</td>
<td>09:46:30</td>
<td>09:46:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Tilehurst</td>
<td>09:50:30</td>
<td>09:50:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Reading West Jn</td>
<td>09:53:30</td>
<td>09:53:30</td>
<td>0</td>
<td>FVL</td>
</tr>
<tr>
<td>Reading High Level Jn</td>
<td>09:55:00</td>
<td>09:55:00</td>
<td>0</td>
<td>FVL</td>
</tr>
<tr>
<td>Reading</td>
<td>10:06:00</td>
<td>10:06:00</td>
<td>720</td>
<td>DML</td>
</tr>
<tr>
<td>Kennet Bridge Jn</td>
<td>10:20:30</td>
<td>10:20:30</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Twyford West</td>
<td>10:23:30</td>
<td>10:23:30</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>Twyford</td>
<td>10:24:30</td>
<td>10:24:30</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>Ruscombe</td>
<td>10:25:30</td>
<td>10:25:30</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Maidenhead</td>
<td>10:29:00</td>
<td>10:29:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Slough</td>
<td>10:33:00</td>
<td>10:33:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>West Drayton</td>
<td>10:38:00</td>
<td>10:38:00</td>
<td>30</td>
<td>ML</td>
</tr>
<tr>
<td>Stockley Junction</td>
<td>10:40:00</td>
<td>10:40:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Heathrow Airport Jn</td>
<td>10:40:30</td>
<td>10:40:30</td>
<td>0</td>
<td>ML</td>
</tr>
</tbody>
</table>

Raw timetable - in the CDAS until 09:47:33 [near Pangbourne]
CDAS LINE CHANGE JOURNEY LOG EXTRACT

<table>
<thead>
<tr>
<th>TRC</th>
<th>20220831 09:47:30</th>
<th>EcoDriver.</th>
<th>-1.100335</th>
<th>-1.10044</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRNYDAT 20220831 09:47:31</td>
<td>18.798 2020831</td>
<td>201 31</td>
<td>76 33</td>
<td>1</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:31</td>
<td>Approachi 09:47:31</td>
<td>18798.3 8.65038</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:31</td>
<td>Approachi 09:47:31</td>
<td>18798.3 8.65038</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:31</td>
<td>Approachi 09:47:31</td>
<td>18798.3 8.65038</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:31</td>
<td>EcoDriver. -1.100324</td>
<td>-1.10034</td>
<td></td>
</tr>
<tr>
<td>JRNYDAT 20220831 09:47:32</td>
<td>18.813 2020831</td>
<td>201 31</td>
<td>76 37</td>
<td>1</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:32</td>
<td>Approachi 09:47:32</td>
<td>18813.4 8.50222</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:32</td>
<td>Approachi 09:47:32</td>
<td>18813.4 8.50222</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:32</td>
<td>Approachi 09:47:32</td>
<td>18813.4 8.50222</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:32</td>
<td>EcoDriver. -1.100122</td>
<td>-1.10023</td>
<td></td>
</tr>
<tr>
<td>JRNYDAT 20220831 09:47:33</td>
<td>18.822 2020831</td>
<td>201 31</td>
<td>76 39</td>
<td>1</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:33</td>
<td>Approachi 09:47:33</td>
<td>18822.2 8.63443</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:33</td>
<td>Approachi 09:47:33</td>
<td>18822.2 8.63443</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:33</td>
<td>Approachi 09:47:33</td>
<td>18822.2 8.63443</td>
<td>Pangbourne 387 4 Car 09:48:40</td>
</tr>
<tr>
<td>MSG</td>
<td>20220831 09:47:33</td>
<td>Application trigger update journey because of: Timetable update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:33</td>
<td>EcoDriver. -1.100025</td>
<td>-1.10013</td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>20220831 09:47:33</td>
<td>Route Diversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTEID 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTESE 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFO 20220831 09:47:35</td>
<td>18.831 Overlapping speed limit 137 at 78.739 kph. Applying speed limit 161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFO 20220831 09:47:35</td>
<td>18.831 Overlapping speed limit 137 at 79.142 kph. Applying speed limit 161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRC</td>
<td>20220831 09:47:35</td>
<td>TSRs are same</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR 20220831 09:47:35</td>
<td>18.831 -1 TT Unable to find details of Didcot West End. Removing it from the timetable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTID</td>
<td>1824743</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TT before change

<table>
<thead>
<tr>
<th>Station</th>
<th>Time</th>
<th>Time</th>
<th>TT</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholsey</td>
<td>09:38:00</td>
<td>09:38:00</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Goring & Streatley</td>
<td>09:42:30</td>
<td>09:42:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Pangbourne</td>
<td>09:46:30</td>
<td>09:46:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Tilehurst</td>
<td>09:50:30</td>
<td>09:50:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Reading West Jn</td>
<td>09:53:30</td>
<td>09:53:30</td>
<td>0</td>
<td>FVL</td>
</tr>
<tr>
<td>Reading High Level Jn</td>
<td>09:55:00</td>
<td>09:55:00</td>
<td>0</td>
<td>FVL</td>
</tr>
<tr>
<td>Reading</td>
<td>10:06:00</td>
<td>10:06:00</td>
<td>720</td>
<td>DML</td>
</tr>
<tr>
<td>Kennet Bridge Jn</td>
<td>10:20:30</td>
<td>10:20:30</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Twyford West</td>
<td>10:23:30</td>
<td>10:23:30</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>Twyford</td>
<td>10:24:30</td>
<td>10:24:30</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>Ruscombe</td>
<td>10:25:30</td>
<td>10:25:30</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Maidenhead</td>
<td>10:29:00</td>
<td>10:29:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Slough</td>
<td>10:33:00</td>
<td>10:33:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>West Drayton</td>
<td>10:38:00</td>
<td>10:38:00</td>
<td>30</td>
<td>ML</td>
</tr>
<tr>
<td>Stockley Junction</td>
<td>10:40:00</td>
<td>10:40:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Heathrow Airport Jn</td>
<td>10:40:30</td>
<td>10:40:30</td>
<td>0</td>
<td>ML</td>
</tr>
</tbody>
</table>

TT after change

<table>
<thead>
<tr>
<th>Station</th>
<th>Time</th>
<th>Time</th>
<th>TT</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholsey</td>
<td>09:38:00</td>
<td>09:38:00</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Goring & Streatley</td>
<td>09:42:30</td>
<td>09:42:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Pangbourne</td>
<td>09:46:30</td>
<td>09:46:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Tilehurst</td>
<td>09:50:30</td>
<td>09:50:30</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Reading West Jn</td>
<td>09:53:30</td>
<td>09:53:30</td>
<td>0</td>
<td>FVL</td>
</tr>
<tr>
<td>Reading High Level Jn</td>
<td>09:55:00</td>
<td>09:55:00</td>
<td>0</td>
<td>FVL</td>
</tr>
<tr>
<td>Reading</td>
<td>10:06:00</td>
<td>10:06:00</td>
<td>720</td>
<td>DML</td>
</tr>
<tr>
<td>Kennet Bridge Jn</td>
<td>10:20:30</td>
<td>10:20:30</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Twyford West</td>
<td>10:23:30</td>
<td>10:23:30</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>Twyford</td>
<td>10:24:30</td>
<td>10:24:30</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>Ruscombe</td>
<td>10:25:30</td>
<td>10:25:30</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Maidenhead</td>
<td>10:29:00</td>
<td>10:29:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Slough</td>
<td>10:33:00</td>
<td>10:33:00</td>
<td>30</td>
<td>ML</td>
</tr>
<tr>
<td>Dolphin Jn</td>
<td>10:34:00</td>
<td>10:34:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Langley</td>
<td>10:35:00</td>
<td>10:35:00</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>Iver</td>
<td>10:36:30</td>
<td>10:36:30</td>
<td>0</td>
<td>RL</td>
</tr>
<tr>
<td>West Drayton</td>
<td>10:38:00</td>
<td>10:38:00</td>
<td>30</td>
<td>RL</td>
</tr>
<tr>
<td>Stockley Junction</td>
<td>10:40:00</td>
<td>10:40:00</td>
<td>0</td>
<td>ML</td>
</tr>
<tr>
<td>Heathrow Airport Jn</td>
<td>10:40:30</td>
<td>10:40:30</td>
<td>0</td>
<td>ML</td>
</tr>
</tbody>
</table>
CDAS LINE CHANGE
ACTUAL TEST TRAIN GPS PATH
We were also able to successfully:
- Add and remove station stops during a trip
- Adjust scheduled timings during a trip
- Inject new short-term timetables
- Cancel trains

What next?
- Peak Power Demand
- Broadcast messages / Degraded running
- Real-time feedback loop
Purpose of this study to investigate the use of DAS to reduce TGV tractive power during known Peak Power Demand [PPD] periods.

- Peak production of power [intermittent] is both environmentally unfriendly and cost ineffective.
- These PPD periods only occur on certain days for limited times. During these balancing periods the power draw of the fleet can be reduced by a pre-defined target.
Three Phased Study

1. Feasibility & manual calculations
2. Optimisation algorithm developed
 Simulation 100+ headcodes
3. On-board trials, Enhanced Algorithm
Our approach doesn’t require modification of the Energymiser/Opticonduite algorithm.

Only the timings are modified - so this approach is easier to implement.
PPD 2. ALGORITHM & SIMULATIONS
BEFORE & AFTER PPD
PPD 3. TRIALS w. ENHANCED ALGORITHM
S/W & H/W ONBOARD

- Feedback information on how to achieve peak power optimisation
- Re-calculate timing points

Laptop mimicking PPD Server

Ad-hoc WiFi network

DAS Tablet

- Driver follows advice – injected with PPD timings, which are updated from the PPD Server
PPD TRIALS

~2.2 MWh energy saved during PPD
Thank You!
SFERA IMPLEMENTATIONS:

PRORAIL/NS

Pim Sierhuis (Prorail – Pim.Sierhuis@proail.nl) / Theo Vis (NS - Theo.Vis@ns.nl)
Status

- Working SFERA service
- Journey Profiles
- Segment Profiles
- Related Trains
Dutch specifics and challenges

- Infra data: two models - schematic and geographic
 - Geographic data not always up to date
 - Mitigated, but not perfect yet
 - Feedback loop by working system

- Simplified technical interface
 - Websockets for Journey Profiles and Related Trains
 - REST calls for Segment Profiles

- Some specials for the Netherlands
 - No real TMS that calculates conflict-free traffic plans
 - Algorithm for stopping point locations
 - ... see our documentation
Approach

- Incremental approach
- Work on problems that are actually there
- Together
- Open mentality

Working systems are the only real measure of progress
Call for participation

- So we’d like to develop our systems further in collaboration with you!
 - Are we on the right track?
 - What other data would you like?
 - We prepared sample data (JP’s, SP’s, RT’s) from our systems: send me an e-mail at pim.sierhuis@prorail.nl

- Come visit our stand at the fair
 - Demo’s with live data
 - Discuss details of data
Data sources

- JP’s and RT’s are live updated
- SP’s are a static representation of the infrastructure
- Two levels of planning, with their own data services that need to be combined to a JP
- Only Related Trains use live train positions and infra status (switch positions etc)
CURRENT SFERA Implementation @ The Netherlands

PRORAIL

Infra Data

Extra Data

NS

Actuaal Material

Related Trains

“TMS”

JP

SP

Enrich

TCS

ETD

3000

3000 Related Trains
NEXT STEPS

PRORAIL

Infra Data

“TMS”

Related Trains

JP

SP

Extra Data

NS

Actuaal Material

Related Trains

SP

TCS

3000

ETD

NEXT STEPS

PRORAIL

Infra Data

“TMS”

Related Trains

JP

SP

Extra Data

NS

Actuaal Material

Related Trains

SP

TCS

3000

ETD
How does it look

• Easier to interpret
• Information in the relevant position
• Better insight into actual situation
• Allows for additional future functionality, i.e. TSB, safety designations,
• Drivers can better anticipate upcoming situations and act accordingly
• Increased safety & punctuality, cost savings
• Android Tablet and Electronic Time Display (Build in)
Example Segment Profile

Outside World

In data

Height

Laa

8

Position

0

200

380,14

380,31

971,20

1903,89

Lat: 52.086 / Lng: 4.362

Ass-Rtd: 57.8

2003,81

2024,15

2026,13
Status ÖBB SFERA implementation

ÖBB / UIC-SFERA Group
From Status Quo to AZL Next Level (AZL NL)

AZL preliminary stage – Driving recommendation with Text SMS
- First implementation of a driving recommendation with output via the train radio
- Implementation and output of INFO - SMS via the train radio

AZL – Adaptive Zuglenkung
- Development and implementation of a KE/KL, an extended forecast calculation, distribution logic / data transmission as well as visualization
- Connection of TRAKSYS with operation-optimized route construction

AZL NL – AZL Next Level
- Further development of the AZL contents as well as implementation of an independent driving time calculation
Objective of today`s appointment:

To show the contents and effect of the SFERA interface, as well as KE/KL1 planned in the TMS2 including the extended forecast calculation (first step) as well as the independent travel time calculation (second step).

(1) Konflikerkennung/Konfliktlösung
(2) Traffic Management System
Agenda

1 About AZL to AZL Next Level 4
2 View into the workshop: FZR calculation logic 11
3 Visualisation on the traction unit 13
4 AZL Architecture Overview 15
Today`s Stand

- Forecast in ARAMIS-ZWL based on reduction potential
- Manual conflict detection & resolution at the TMS
- Text-SMS

Forecast based on reduction potential

The current forecast uses stored reduction potentials (travel and stop time reserves). It does not consider the infrastructure used and the actual vehicle characteristics.

(1) Taken from train planning tool
To achieve the goals AZL NL is a necessary intermediate step in AZL

Prospect
Driving recommendations to be displayed
KE /KL Phase 1

AZL

Sophisticated implementation of the (fully) automatic KE/KL
Extensive implementation of the FZR\(^1\) component (including linear optimization)

(1) Driving time calculator

TLP gelb (Adressatenkreis)
Intermediate step within the framework of the AZL

Adaptive Zuglenkung

ARAMIS-ZWL based on the extended forecast

Partially automated conflict detection & resolution at the TMS1

(Operation-optimized) driving recommendations2

Advanced forecasting at the TMS3

(1) KE/KL phase 1 if possible, incl. consideration of aS/ISBE
(2) Based on extended forecast calculation
(3) Based on program code that is not yet released in ÖBB-TMS
Advanced forecasting at the TMS

extended forecast calculation at the TMS

Infrastructure basis: Extended track plan node model at the TMS

(Vehicle) database: Rolling stock stored at the TMS (enriched with data from TRAKSYS and FZ-database)

Calculation basis: Specified constraint points must be "hit" by capping the maximum speed

The specific extension of the track plan node model as well as the aggregation of the rolling stock are also needed for the stand-alone FZR component.
Activation of the TMS internal "Advanced Forecasting".

Basic travel time calculation is fit, further fine tuning necessary. The calculated speeds (in the train running profile) can be used for a driving recommendation calculation. All dispositive measures with effect on the FZR must be considered.

Not shown, but necessary for AZL NL:
- Consideration of influences from train protection systems
- Calculation of ATO Journey Profiles

- TMS-internal travel time calculation based on the stored infrastructure and vehicle data.
- Along a route different (passage) times have to be met.
- Determination of the "suitable" speed is done iteratively.
Adaptive Zuglenkung (Next Level)

- Calculation at the TMS on the basis of an accurate FZR
- Automated conflict detection & resolution at the TMS
- Operating and energy-optimised driving recommendations (FE)

Driving time calculation (FZR) on uniform data stock

Departure timetable is an independent project - content and elaborations are used at ANL

(1) Including interaction between journey and occupancy accounting at the TMS
Agenda

1 About AZL to AZL Next Level 4
2 View into the workshop: FZR calculation logic 11
3 Visualisation on the traction unit 13
4 AZL Architecture Overview 15
Possible calculation methods of the stand-alone FZR component

<table>
<thead>
<tr>
<th>Method</th>
<th>How it works</th>
<th>Possible use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical / control driving time</td>
<td>Extending the restrictive speed profile taking into account infrastructure and vehicle characteristics</td>
<td>Determination of minimum travel time</td>
</tr>
<tr>
<td>Travel time with sectional surcharges</td>
<td>Travel time calculation taking into account sectional percentage travel time extensions.</td>
<td>Determination of approximate speed profile</td>
</tr>
<tr>
<td>Driving time with restricted maximum speed</td>
<td>Travel time calculation based on the extended forecast calculation, "hitting" predefined target travel times while capping the maximum speed (with/without coasting)</td>
<td>FZR for timetable construction / departure actual FPL</td>
</tr>
<tr>
<td>Travel time with minimum energy requirement</td>
<td>Running time calculation that provides the lowest energy consumption for a train path while complying with (sectional) target running times</td>
<td>FZR for FE and disposition / KL</td>
</tr>
<tr>
<td></td>
<td>Agenda</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>About AZL to AZL Next Level</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>View into the workshop: FZR calculation logic</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Visualisation on the traction unit</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>AZL Architecture Overview</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Prospect</td>
<td>17</td>
</tr>
</tbody>
</table>
Visual relief through intersected display

infraDOAS

Separate display of static book timetable, driving recommendation, commands and la

mixed timetable data (vision view)

There is only one source of information for the Tfzf with the current departure timetable.

No more "transfer power" necessary: the driver sees directly the speed to be driven

Reporting of reduced braking and acceleration power by the train

Illustration on the right based on ADL 4.0 of the SBB
Agenda

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>About AZL to AZL Next Level</td>
</tr>
<tr>
<td>2</td>
<td>View into the workshop: FZR calculation logic</td>
</tr>
<tr>
<td>3</td>
<td>Visualisation on the traction unit</td>
</tr>
<tr>
<td>4</td>
<td>AZL Architecture Overview</td>
</tr>
</tbody>
</table>
AZL Architecture (Top-Level)

- Infrastructure Data
- Train preparation
- Timetable data

Functional Components:
- TMS-System
- InfoHUB API Gateway
- InfoHUB MQTT Broker
- Token Service
- Visualization DAS

Flow:
1. Infrastructure Data to TMS-System
2. TMS-System to InfoHUB API Gateway
3. InfoHUB API Gateway to InfoHUB MQTT Broker
4. InfoHUB MQTT Broker to Visualization DAS

Annotations:
(1) slow speed points
(2) aS (exceptional broadcasts)
(3) train preparation
(4) timetable
(5) authentication/authorization
(6) driving recommendation

TLP gelb (Adressatenkreis)
IMPLEMENTATION ROADMAP

SNCF Réseau

Sébastien DISLAIRE
Aims of SNCF Réseau implementation roadmap

Capture advantages of DAS: punctuality, capacity, safety, efficiency and quality of service

Establishing the trackside for 100% of trains to operate under DAS or ATO:
- Integrating with RU projects and DAS suppliers

Establishing the stepping stones towards ATO implementation
Constraints and Deployment strategy

We aim to offer end-to-end journey description to drivers

We will rely on the different operating modes SFERA provides to overcome two major constraints:

- A significant part of the network is not supervised by traffic managers (low traffic lines)
- Sufficient data for DAS is not currently available on the whole network
IT Implementation strategy

Aim: maximizing common components for Timetable, ATO and DAS data.

2 protocols for output to the RUs:
- SFERA for Timetable and then DAS
- CCS TSI for ERTMS/ATO
Stay in touch with UIC:

www.uic.org

#UICrail

Thank you for your attention.
STATUS OF SFERA MEMBERS
DAS and SFERA Implementation
The SFERA Working Group

UIC Project

<table>
<thead>
<tr>
<th>Company</th>
<th>Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>Infrabel</td>
</tr>
<tr>
<td>NMBS/SNCB</td>
<td>NS</td>
</tr>
<tr>
<td>ÖBB</td>
<td>ProRail</td>
</tr>
<tr>
<td>SBB</td>
<td>SNCF</td>
</tr>
<tr>
<td>Trafikverket</td>
<td></td>
</tr>
</tbody>
</table>
DB Netz
DB Netz Update

DB Netz prepares to send SFERA messages in the next years:

1. C-DAS-C for existing use cases ("Green Functions" of DB Netz) and Related Train Information (Farsight/Rearview) coming in 2023/2024
2. C-DAS-O based on dispatching decisions and location/speed messages coming after 2025
3. continuous C-DAS-O messages and energy messages not yet decided
Infrabel
Infrabel

• We have upgraded our TMS (based on SBB RCS): live since April 2022:
 • This is the technical back-bone/pre-requisite for DAS
• DAS-planning & implementation update:
 • Delivering data for trials with S-DAS
 • C-DAS-C implementation on schedule:
 a) Use out of the box RCS-ADL (which calculates C-DAS-C messages) as base
 b) Develop simple web-app to receive C-DAS-C messages using SFERA over MQTT
 c) Ensure sufficient data quality to start live test runs in 2023
 • Starting discussions with RUs and DAS-suppliers on how to implement C-DAS-O:
 a) Investigate possibilities to use RCS to output train path envelope/journey profile
 b) Directly to device on-board in IM-train setup (via MQTT).
 c) Delivering data using SFERA-format by our Data Exchange to the RUs.

NOTE 1 - This can be by Common Interface (if requested).
NOTE 2 - Data can also be handled using a server offered by a DAS-supplier as SaaS to some RUs.
Planning DAS (TMS-ADL) 2022-2023

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>2023/Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go-live</td>
<td>TMS upgrade (without ADL)</td>
<td>Setup TMS-ADL, develop simple client for mobile device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup secure messaging in SFERA format</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understand comms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test runs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Quality improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-DAS-O integration (timing TBD in collaboration with implementation partner!)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SBB Plan for 2023

SBB plans to develop a C-DAS O solution in 2023.
SFERA ed 2.0 fits to the whole set of SBB’s requirements.
A first set of functionalities has been determined for the first version.
 • Some requirements are not yet available automatically on the TMS side, they are left aside.
Thanks to the AdvisedSpeed structure (new in ed. 2), SBB can go straight to C-DAS O mode with its existing solution, without investing too much ressource on the tablet.
1. FUTURE DAS PRESENTATION FOR DRIVERS

Drivers instructions:
- updating in real time and containing the current time, the radio channel, etc.

A representing view from the journey to be able to anticipate further speed sequences:
- Driver’s advice,
- Maximum speed,
- Journey view (stopping / passing point, KP and track information),
- Working zone.

Necessary informations for the driver (documentation access point and train composition) and other useful informations (notes, global informations of the journey and settings).

Informations for the next stopping point (name, planned and estimated schedules, conventional signs).
2. SNCF specific aspects IN THE SFERA FORMAT

SNCF wishes to implement the SFERA format to be able to interact with others as soon as possible.

At the end of the year 2022, SNCF will be able to recreate data for the DAS that will be clean enough to have the DAS module working properly. In the same time, SNCF benefits from this change to implement the SFERA format.

SNCF will not use the entire perimeter of the norm at the beginning because the communication between the IM and the RU is not ready yet. Moreover, SNCF add some tags needed by the DAS module which are specific for the French Railway Network. These tags are presented on the right side of the presentation.

Specific tags for SNCF

<table>
<thead>
<tr>
<th>Object</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTN_ID</td>
<td>SNCF_DisplayName</td>
<td>SIV (traveller information system) train code</td>
</tr>
<tr>
<td>Temporary Constraints</td>
<td>SNCF_IdCIC</td>
<td>CIC Id for the working zone</td>
</tr>
<tr>
<td>Timing Point</td>
<td>SNCF_SignesConventionnels</td>
<td>Conventional signs for timing points</td>
</tr>
<tr>
<td>Timing Point</td>
<td>SNCF_TPVirtualBalisePosition</td>
<td>GPS coordinate for timing points</td>
</tr>
<tr>
<td>G2B_ReplyPayload</td>
<td>SNCF_DEFIT</td>
<td>Id for the DEFIT pdf (compulsory form for public works)</td>
</tr>
</tbody>
</table>
Trafikverket
Ongoing pilot with C-DAS in cooperation with a few different RUs
 • Not using SFERA at this point
 • Both passenger and freight trains
 • Established for a few stretches where a RTTP (Real Time Traffic Plan)/”Journey Profile” is delivered 24/7 from a digitalized time-distance graph
This autumn the first steps towards the SFERA standard have been taken
 • The messages Journey Profile (JP) and Segment Profile (SP) will be used to replace the format of the existing messages in the pilot
 • JP and SP will at the beginning contain the data to achieve a similar functionality as of today
 • More data in the JP and SP will be added as the work continues
 • Will in the beginning use the integration platform already established
 • Using the Common Interface will be a later step
From the result of the work done during this autumn Trafikverket will in the beginning of next year establish a more specific plan for the work 2023
Stay in touch with UIC:

www.uic.org

#UICrail

Thank you for your attention.
SFERA and X2Rail4
Joint work towards TSI 2026
Class B ATP Systems

SFERA
- Enhance C-DAS and GoA1 operations
- Provide the driver with additional information in GoA1/2
- Usable on all ATP Systems (incl. ETCS L1LS)
- Simple, scalable, moderate investments
- Promotes precative preparation of data and systems for ATO

ETCS & ATO over ETCS
- Subset 125
- Subset 126
- Subset 148

SFERA complementary to ATO over ETCS for covering all train operating use cases
One standard for ATO and C-DAS in Europe.

Parallel standard phase
SFERA and SS126 are maintained in parallel. Changes in SS126 are integrated into SFERA. Smaller change requests for SS126 proposed by the SFERA WG.

Merging
The standards are merged into one norm.

Single standard phase
One single standard ensures interoperable DAS and ATO operations on all lines in Europe and all usage scenarios.

SFERA roadmap vision update
Provisioned architecture GoA1-4, including DAS

Trackside

Traffic Management systems

Train Management systems

On-board

Train Protection

SCV

Localization

APM

ATO

REP

DAS

PER

Physical env.

Light signal

Legend

Scv signal converter
Rep Repository
Apm Automatic processing module
Per Perception module
Joint work SFERA – Shift2Rail

One standard for ATO and C-DAS in Europe.

Application data
- Alignment on the data content
 - Mission Profile
 - Train data sets
 - Journey Profiles
 - Segment Profiles
 - Static layers
 - Dynamic layers
 - Alignment on common Use Cases
 - Alignment on the data format
 - binary
 - XML
 - Other

Communication Session Management principles
- Alignment on common Use Cases
 - Normal operation in fitted area
 - Crossing borders
 - Coupling and uncoupling
 - Change of CAB
 - ...
- Support of specific Use Cases (e.g.)
 - Application installed on tablets associated to a driver
 - Automatic powering on and off.

Lower Layers of communication
- Alignment on common Use Cases
- Full compliance with FRMCS set of documents
- Introduction of layers currently used in SFERA (e.g. MQTT)

Target date: 12/2023
Questions?

Thank you!