

Stakeholders workshop (extended user group)

Online participants:

- Please rename as [Name Surname (Company)] •
- Please remain on mute while a speaker is active ullet

Welcome to the

DAS - SFERA

UIC SFERA Working Group UIC SFERA User Group

08 November 2023, Paris

Philippe Stefanos Sustainability advisor Energy and emissions UIC

Welcome Introduction Agenda

12:00 Light lunch

12:40 Welcome by UIC Director (Jean-Michel Evanghelou)

12:45 Introduction: status of SFERA (Daniele Arena)

13:00 Planned/Working implementations

- **SFERA Members (Daniele Arena)**
- Trafikverket (Peter Olsson)
- **SNCF Réseau (Sébastien Dislaire)**
- ÖBB (Daniel Friedl)
- MTrail (Yves Wyder)

13:50 Adapting the Common Interface to C-DAS operations (Thomas Pynthe)

14:05 Break

14:25 Looking ahead: Digital instructions and SFERA (Sébastien Dislaire) 14:40 Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset) 14:55 The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) 15:10 Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers) 15:35 Mini-workshop on SFERA interoperability (in subgroups) (Thomas Sutter, Alain Wenmaekers) **16:15 Fair/Networking**

- Transrail
- **NS+ProRail**
- MTrail
- **SFERA**

17:30 End

Daniele Arena Lead & Project manager SFERA & Traction energy settlement data UIC

Introduction

INTERNATIONAL UNION OF RAILWAYS

STATUS OF SFERA

Daniele ARENA UIC, SFERA Working Group

SFERA Workshop, November 8th 2023

It all started in 2016

SFERA project: 2017-2019

Working Group

End of 2021-2023 SFERA maintenance

Next phase: 2024-2026 SFERA maintenance

- Current members have expressed interest
- 1 potential new member
- There is always time to join! (UIC Members)

DB	Infrabel
NMBS/SNCB	NS
ÖBB	ProRail
SBB	SNCF
Trafikverket	SŽ

User Group

1 webco/meeting every 3 months (more or less)

84 members (subscribed to the mailing list)

Average: less than 3 e-mails per month

Half of you is not registered to the User Group, please sign up!

https://uic.org/events/irs-90940-sfera-change-requests-and-sfera-usergroup#SFERA-User-Group

This year's registrations: 94

- 63 in person
- 31 online
- 48 companies represented

Attendees Affiliation

- IM (WG)
- RU (WG)
- IM (non-WG)
- RU (non-WG)
- Manufacturer
- DAS Supplier
- Software
- Association

Sharing experiences between stakeholders

*101 for Edition 1

- New Scope: Digital European Instructions
- Improving Interoperability
- Continued effort to enhance the protocol quality
- Additional functionality for DAS

*101 for Edition 1

Edition 3: enhancement

Improve the quality of the protocol

Fixing 30+ "bugs" to clarify details and adjust text in light of real-life tests and in-depth analysis

Addition of details on Platform (e.g. name, side, usage)

Addition of "virtual" KM markers

Addition of visual identifiers of signals

Alternative itineraries

Last moment itinerary change: possible delay in JP update from TMS

- DAS: Inaccurate Advice
- ATO: risk of stopping point overshoot

Journey profile will include alternative « Segment Profile lists »

Alternative itineraries: Timing Point equivalencies

to consider the original timing point constraints.

Timing Point equivalencies will be used for the DAS-OB to determine where

Input requested: Traction Force Curves and different traction modes (poster during "fair")

Traction Force Curves are defined in IRS 90940:

As part of Train Characteristics

Sent from Ground to Board

Dependent on:

- Current
- Voltage
- Traction type (Self-propelled, Powerless, Electrical)

How should SFERA improve the handling of Traction Force Curves, specifically for a combination of different traction modes (e.g. battery, hydrogen, diesel, overhead contact line)?

Please provide your input

What parameters can influence Traction Force Curves?

How should degraded situations be handled?

Is it more efficient to calculate TFCs on board? What input is needed?

Edition 3: Improving interoperability

Making the SFERA solution a standard

SFERA: "voluntary adoption" solution

Many projects in Europe show that SFERA covers real business needs

Multiple initiatives towards TSIs:

- OPE: Proposition to ERA to define the Digital European Instructions protocol
- TAF & TAP:
 - Continued alignment of data objects
 - Presentation to the Telematics Experts Group

- CCS: Track-train communication workshops with S2R4 (tbc with ERJU)

TAF/TAP inclusion

Data elements from the TAF/TAP XSD in SFERA

Currently: "copy/paste" Objective, following positive feedback from UG: include the TAF/TAP XSD in Edition 3

Next User Group Appointments

Next User Group webcos:

- 15 March 2024 10:00-12:00
- 05 June 2024 10:00-12:00

Next workshop: probably in spring 2025

12:00 Light lunch

- **Welcome by UIC Director (Jean-Michel Evanghelou)** 12:40
- 12:45 **Introduction: status of SFERA (Daniele Arena)**
- 13:00 **Planned/Working implementations**
- **Adapting the Common Interface to C-DAS operations (Thomas Pynthe)** 13:50

14:05 Break

- **Looking ahead: Digital instructions and SFERA (Sébastien Dislaire)** 14:25
- 14:40
- 14:55
- 15:10
- 15:35
- 16:15 **Fair/Networking**

17:30 End

Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset) The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers) Mini-workshops on SFERA interoperability, subgroups (Thomas Sutter, Alain Wenmaekers)

SFERA Working Group: Overview Daniele Arena UIC

Implementation

STATUS OF SFERA MEMBERS **DAS and SFERA Implementation - 2023**

INTERNATIONAL UNION **OF RAILWAYS**

DAS/SFERA Workshop, Paris 08/11/2023

The SFERA Working Group

UIC Project

Réseau

DB Netz prepares to send SFERA messages in the next years:

- coming after 2025

1. C-DAS-C for existing use cases ("Green Functions" of DB Netz) and Related Train Information (Farsight/Rearview) coming in 2024/2025 2. C-DAS-O based on dispatching decisions and location/speed messages

3. continuous C-DAS-O messages and energy messages not yet decided

DAS @ Infrabel

- 1. We have been further testing the C-DAS-C on lines 50A and 59 (between Gent and Zeebrugge). Recently test also started on a third line.
- 2. It is possible to extend early 2024 to big parts of freight corridors.
- 3. We are checking with NMBS how they can add the advice on the driver-app. This app already has a recommended speed when running on time and can then also represent the speed advice coming from Infrabel to avoid a conflict.
- 4. We were contacted by Thalys (now called Eurostar red). They are now installing EMS on their fleet and are investigating to add a DAS that can work with the data available in France and Belgium and by preference also in Netherlands and Germany.
- 5. On request we can manually create JPs and SPs for a few train-runs. This is offline data. Such data can be used in a ground server of a DAS-application to start S-DAS function cross-border also for the trajectories in Belgium. If merged with C-DAS-C, this should give already a good result.
- 6. We need to have requests for implementations needing JPs and SPs to speed up the creation of a DAS-TS able to send this data following SFERA-protocol (C-DAS-O).

Current Trackside Implementation NS - Prorail

SBB is in the process of implementing SFERA.

The replacement of the existing C-DAS device in Switzerland (LEA / LOPAS) and the migration of the existing communication channel (ADL channel) to the SFERA interface is ongoing. The current system will be fully replaced by the end of 2026.

What we did so far and our plans:

* CENELEC EN50126, Lifecycle Model

SNCB/NMBS

- Next speed advices/modes side to timetable (resolution \sim 15 km)

SNCF Voyageurs

Currently deploying SIRIUS Next for all passenger trains. End of deployment planned mid-2024. This DAS is provided with SFERA data from SNCF Voyageurs allowing short term corrections to fit drivers' requirements and expectations.

Trafikverket (SFERA Working Group) **Peter Olsson**

Implementation

C-DAS with SFERA

Peter Olsson, Trafikverket Sweden

The progress of Trafikverket's SFERA implementation

Content

- Background ullet
- Implementation lacksquare
- **Test Possibilities** lacksquare
- The Plan Ahead \bullet

Traffic Management System

- The in-house developed system Steg ullet
 - The source of the RTTP
 - Planned to cover 60-80% of the remote controlled network in Sweden
- Acts as a platform to test new concepts ullet
 - Part of demonstrations within Europe's Rail (the new big research and innovation partnership)
- Used to test improvements of the HMI ulletwhen using C-DAS

What We Support

- **IM-RU Setup** \bullet
 - Implementing the IM DAS-TS
- Connection via Common Interface \bullet
 - According to SFERA Edition 2
- **C-DAS-O** Architecture \bullet
 - Journey Profile
 - Segment Profile ____
 - **Train Characteristics** _____

Test Possibilities

- A test environment will be established via Common Interface \bullet
 - Connected to a test installation of Steg/TMS
 - Runs the IM DAS-TS
 - To be used for tests with the railway undertakings
- A web interface exists for manual tests of the data provided ullet
 - Includes some of the SFERA use cases _____
 - Will maybe be made available externally _____
- Test in production with real trains lacksquare

Many Things Left to Do

- More data in the segment profiles \bullet
- Build a service that updates the segment profiles
- Improved definition and calculation of the timing points
- Introducing Train Characteristics
- Add more monitoring, testing and simulation capabilities \bullet
- Interaction with the TMS
- Tool for visualisation and validation \bullet

The Plan Ahead

- Existing C-DAS project ends this year \bullet
 - Have been running a non-SFERA implementation as a pilot from 2019
 - Will finish the first implementation with SFERA during 2023 ____
- New project starting in the beginning of next year \bullet
 - Continue the work with SFERA and the interaction with the TMS
 - Cooperate with railway undertakings ____
 - Will last until end of 2026
 - Be part of a Europe's Rail demonstration (FP1 WP16) in 2026

nat was all

peter.olsson@trafikverket.se www.linkedin.com/in/sopolsson

SNCF Réseau (SFERA Working Group) Sébastien Dislaire Interfaces for Clients and IMs in traffic management (TAF-TAP, ATO, C-DAS)

Implementation

INPLEMENTATION ROADMAP **SNCF** Réseau

INTERNATIONAL UNION OF RAILWAYS

Sébastien DISLAIRE

SFERA Edition 2 Workshop / 10/10/2022

Aims of SNCF Réseau implementation roadmap

Capture advantages of DAS : punctuality, capacity, safety, efficiency and quality of service

Establishing the trackside for 100% of trains to operate under DAS or ATO : - Integrating with RU projects and DAS suppliers

Establishing the stepping stones towards ATO implementation

Step 1 : Timetable mode

Objectives :

- End-to-end journey description to drivers
- Core of the segment profile

- Theoretical timetable + stop types

Journey Profile : **Applicable OTN**

Annotations

Segment Profile :

- Virtual Balises
- Km reference points
- Timing Points at stations
- Max speeds >5km
- Line + track identifier
- Primary Locations (TAF-TAP)
 - Traffic management tel contact

SFERA Protoco

Step 2 : S-DAS

Objectives :

- Add data useful for speed envelope calculation
- Include input from providers and RUs

Journey Profile additions : Temporary Speed Restrictions

Segment Profile additions :

- Max speed <5km
- Stopping points of front of train
- Gradients
- Curve radius
- Catenary signals

Step 3 : C-DAS

Objectives :

- Data updated throug -
- Include input from providers and RUs

Journey Profile additions : Timing point and SP list updates based on TMS data Train hold/interruption **ICT** optimizations

Segment Profile additions : Passing points at signals -Subsidiary locations (TAF-TAP)

Step 4 : Enhancements

Objectives :

- Enhance data quality on whole network
- Optimize C-DAS functions for more throughput and coordination

Journey Profile additions : Traffic manager messages Automatic timing point optimization

. . . .

TMS

C DAS

Segment Profile additions : To be defined

S DAS

ÖBB Infrastruktur AG (SFERA Working Group) **Daniel Friedl** Railway system, Train control, ATO

Implementation

ATO goals & evolutionary development:

anaron

25

Slides explaining the ATO goals and how to achieve them using an evolutionary approach.

1 5

ÖBB-Infras

Adaptive Zuglenkung and Automatic Train Operation

Driving recommendation

Driving instructions

Expected focus of the ATO evaluation project

Due to complex technical, operational and legal challanges (braking behaviour, braking curves, etc.), GoA Level 2 journeys in freight transport (FT) can only take place after the challenges have been completely solved.

An additional essential "Enabler" technology for the implementation of GoA 2 journeys in freight transport is the Digital Automatic Coupling (DAC)

GoA Level 1 (AZL) is realised as a preliminary stage to GoA Level 2.

GoA ... Grade of Automation . Adaptive Zuglenkung ETCS ... European Train control System

Projects on the way to GoA Level 2

INFRA Programm Digitaler railway operation

ATO GoA Level 1

Manual drive with drive recommendation

Adaptive Zuglenkung (AZL)

SMS driving recommendation

ÖBB-Infrastruktur AG/Bahnsysteme/Zugsteuerung

Evolutionary development up to the target image!

Project completed Project In implementation • Project in planning

15.11.2023

ÖBB-Infras

SFERA Authentication & Authorization Flows

ÖBB Approach - C-DAS-C IM-Train setup

Authentication & Authorization Flows

ATO system technical presentations:

ana an

rs

Slides explaining how ATO works from a system engineering perspective

10

ÖBB-Infras

Development C-DAS-C \rightarrow C-DAS-O \rightarrow C-DAS-O + controlling feed-through

ÖBB-Infrastruktur AG/Bahnsysteme/Zugsteuerung

- Infrastructure data
- Vehicle data
- On-site specifics

15.11.2023

Architecture Comparison SFERA vs ERJU

Possible SFERA/ERJU scenarios

Railway Undertaking (RU) Scenario 2

Actual/target process comparison planning/disposition/train journey

15.11.2023

Video C-DAS-C Driving Recommendations

29389 aktiv		12201 b GSM-R-A 10:59:48										
			vamb) ×aamax	1 1	Ì		Refehl 2/2	Ouittiget				
	70	1.4	Wien Hauptbf Südtiroler Pl. (in Wwb)		10:01	10:02		Quittiert			2	
	80	0.8	Sbl Gr 1				3. Langsamfahren (Bef. Nr.: MD-22-1062)					
	80	0.4	Str. 122 W.MatLaxenburg (in Wbf) *Mlx*			10:03	Langsamfahre 3.2 zwischen E von km 30.300		≣			
	100	0.0	km 0.0 = km 9.6				3.6 Langsamfahrsignale nicht aufgestellt!					
	100	9.4	W.Matzleinsd. Platz (in Wbf)				3.8 Langsamfahrstelle mit PZB nicht abgesichert! Grund: Befehl für Demo					
	100	8.7	W.Matzleinsdorf (in Wbf) *Mat*			10:05						
	00	0.0										
	00	8.Z					100					
La	80	8.2 7.7	Wien Meidling (in Wbf) *Mi [,]	•	10:07	10:09	12201 b	Wien Praterst	tern (in Nw) - Wien Hüt	teldorf (in Hf)	- 9	
La La	80 80 100	8.2 7.7 6.9	Wien Meidling (in Wbf) *Mi [,]	•	10:07	10:09	12201 b Wien Praterstern (in Nw)	Wien Praterst	tern (in Nw) - Wien Hüt	teldorf (in Hf) 50		
La La La	80 80 100 100	8.2 7.7 6.9 6.7	Wien Meidling (in Wbf) *Mi W.MatWienerb. (in Wbf) *Wbb*	•	10:07	10:09 10:11	12201 b Wien Praterstern (in Nw)	Wien Praterst 6,200 6,050 150m	tern (in Nw) - Wien Hüt	teldorf (in Hf) 50 Gl. 4 und 6		
La La La	80 80 100 100 120	8.2 7.7 6.9 6.7 6.0	Wien Meidling (in Wbf) *Mi W.MatWienerb. (in Wbf) *Wbb* km 6.0 = km 5.1		10:07	10:09 10:11	12201 b Wien Praterstern (in Nw)	Wien Praterst 6,200 6,050 150m	tern (in Nw) - Wien Hüt	teldorf (in Hf) 50 Gl. 4 und 6		
La La La	80 100 100 120 120	8.2 7.7 6.9 6.7 6.0 5.2	Wien Meidling (in Wbf) *Mi W.MatWienerb. (in Wbf) *Wbb* km 6.0 = km 5.1 Str. 105 Wien Hetzendorf (i Wbf) *Het*	n	10:07	10:09 10:11 10:12	12201 b Wien Praterstern (in Nw)	Wien Praterst	tern (in Nw) - Wien Hüt	teldorf (in Hf) 50 Gl. 4 und 6	11236 BR	
La La La	80 100 100 120 120	8.2 7.7 6.9 6.7 6.0 5.2 6.1	Wien Meidling (in Wbf) *Mi* W.MatWienerb. (in Wbf) *Wbb* km 6.0 = km 5.1 Str. 105 Wien Hetzendorf (in Wbf) *Het* Sbl Wbf 1	n	10:07	10:09 10:11 10:12	12201 b Wien Praterstern (in Nw)	6,200 6,050 150m	tern (in Nw) - Wien Hüt	teldorf (in Hf) 50 Gl. 4 und 6	11236 BR	

12201 h Wien Praterstern	(in Nw) - Wien Hütteldorf (i	in Hf)
LEVI D WICH Flate Stern	(III NW) - WIEII HULLEIUUH (

MTrail Yves Wyder Oliver Unger

Implementation

Verifying Interoperability Presentation and Invitation to Contribute

Oliver Unger, Yves Wyder, Simon Eggler

8th November 2023

Who We Are

Oliver Unger Software Engineer

Yves Wyder Domain Expert

C-DAS-C (RCS ADL and LEA)

Simon Eggler DAS Expert

40 more experts

C-DAS-C (RCS ADL and SFERA)

Our Learnings with SFERA

- ensures syntactic correctness
- defines technical requirements
- pushes standardisation
- provides common language

- room for interpretation ($\frac{1}{2}$ interoperability)
- XSD cannot describe dynamic behaviour

Vision of SFERA Specification

SFERA XSD AsyncAPI

Generators

Documentation, Code (object model)

Interactive documentation

Code (integration modules)

Validation tools

Validation Tools

Reference Implementation

Validation Tools

Verify your DAS-OB implementation

Validation Tools

Verify your DAS-TS implementation

Wish List

- Reusable friendly licence
- JSON support
- Chat instead of mailing list

Come to our table

12:00 Light lunch

- **Welcome by UIC Director (Jean-Michel Evanghelou)** 12:40
- 12:45 **Introduction: status of SFERA (Daniele Arena)**
- 13:00 **Planned/Working implementations**
- **→ 13:50**
- 14:05 Break
- 14:25 **Looking ahead: Digital instructions and SFERA (Sébastien Dislaire)**
- 14:40
- 14:55
- 15:10
- 15:35
- 16:15 **Fair/Networking**

17:30 End

Adapting the Common Interface to C-DAS operations (Thomas Pynthe)

Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset) The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers) Mini-workshops on SFERA interoperability, subgroups (Thomas Sutter, Alain Wenmaekers)

Thomas Pynthe SNCF Réseau

Common interface for C-DAS

COMMON INTERFACE Serving the needs of C-DAS systems

Thomas PYNTHE – SNCF Réseau

SFERA User Group Plenary meeting

November 8th 2023

ARCHITECTURE AND PLACE IN THE IT SYSTEM

CI Architecture

SFERA Architecture including the CI

Inter-Cl communication

Standard Technologies

CI can handle many different xsd

... even if not TAF/TAP

<MessageHeader> <MessageReference> <MessageType>SF01</MessageType> <MessageTypeVersion>1.0</MessageTypeVersion> <MessageIdentifier>randomguid</MessageIdentifier> <MessageDateTime>2023-11-08T14:00:00</MessageDateTime> </MessageReference> <Sender>0087</Sender> <Recipient>1187</Recipient> </MessageHeader>

Existing use case

Homemade

XML Message

Header - Cl routing info

Message Payload

- TAF/TAP
- SFERA
- Homemade

CI « Off the shelf » ?

Internal Development

CI is a concept, its specifications are described in the TAF/TAP regulations

Software Package

CI are also available as « off the shelf » products

RNE CI : UPDATES TO MEET NEW PERFORMANCE NEEDS

Current RNE Common Interface

- Efficient
- Easy to setup
- Widespread use in Europe

 \bullet \bullet \bullet

	Co-financed by the Connecting Europe Facility of the European Union	Welcome <i>Thomas</i> Logged in as <i>CONSULTANT</i>	S Change Password	My Profile	(?) Help	_ ∏ L Logout
board Administration Reference Data	Log & Audit Metadata Mapping LI Info	rmation Reports				
Status Outbound Online Status Inbound Onlin	e Status Configuration Status					
Dashboard >> Queue Status						
+ Legend				_	_	
		Auto Refresh: 🔤 S	econds: 10 🗸 Actual	Time: 17:49:1	Refresh	
	0	-		01-1		
Queue Name	Queue Type	lotal No. of Messages		Status		
InboundDLQ	Database Queue	37525		•		
OutboundDLQ	Database Queue	170229		•		
OutboundRDLQ	Database Queue	572438		•		
InboundRDLQ	Database Queue	0		•		
Outbound Processing Queue	Processing Queue	0		0		
Inbound Processing Queue	Processing Queue	0		9		
JMSQueueMPMessagePersist	Processing Queue	0		0		
JMSQueueMPOutboundReDelivery	Processing Queue	0		9		
JMSQueueMPInboundReDelivery	Processing Queue	0		0		1
		·				

RailNetEurope - Common Interface(CI) 2.3.1 Copyright © 2023 RN

Default Connectors

Connecting to legacy internal applications

Internal System

RNE New Common Interface

Updating technology stack

- Scalability
- High availability
- Performance

Clused for critical needs

New CI Delivery

RNE Roadmap

DEVELOPMENT

0.x previews within RNE

RELEASE

Available to all CCS licensees

INTEGRATION IN C-DAS PRODUCTS

Opportunity for IT providers

One CI can handle messages for multiple companies

Usual architecture

Example of possibility for an IT provider : global software including C-DAS

Alternative architecture

Possibility to have multiple instances per RU

Example of possibility for an IT provider limited to C-DAS software

Thank You !

Stay in touch with UIC: www.uic.org Sin Ø O You Tube **#UlCrail**

Thank you for your attention.

12:00 Light lunch

- **Welcome by UIC Director (Jean-Michel Evanghelou)** 12:40
- 12:45 **Introduction: status of SFERA (Daniele Arena)**
- 13:00 **Planned/Working implementations**
- **Adapting the Common Interface to C-DAS operations (Thomas Pynthe)** 13:50

14:05 Break

- **Looking ahead: Digital instructions and SFERA (Sébastien Dislaire)** 14:25
- 14:40
- 14:55
- 15:10
- 15:35
- 16:15 **Fair/Networking**

17:30 End

Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset) The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers) Mini-workshops on SFERA interoperability, subgroups (Thomas Sutter, Alain Wenmaekers)

15 minutes

12:00 Light lunch

- **Welcome by UIC Director (Jean-Michel Evanghelou)** 12:40
- 12:45 **Introduction: status of SFERA (Daniele Arena)**
- 13:00 **Planned/Working implementations**
- **Adapting the Common Interface to C-DAS operations (Thomas Pynthe)** 13:50

14:05 Break

- **→ 14:25**
- 14:40
- 14:55
- 15:10
- 15:35
- 16:15 **Fair/Networking**

17:30 End

Looking ahead: Digital instructions and SFERA (Sébastien Dislaire) Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset) The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers) Mini-workshops on SFERA interoperability, subgroups (Thomas Sutter, Alain Wenmaekers)

Sébastien Dislaire

Digital European Instructions

DIGITAL EUROPEAN INSTRUCTIONS SFERA members' vision for interoperable digital instructions

INTERNATIONAL UNION OF RAILWAYS

SFERA User Group Meeting (01/2023)

What are European Instructions?

Safety of train operation is primarily ensured by technical systems (signalling...).

Instructions are used to give drivers:

- Authorisation to bypass those technical systems
- An order to adopt a more restrictive behaviour

OPE TSI defines standard instructions that are set to replace national instructions.

A Train No	B Date	C Location of is
D Location of Train		E Unique ident
European In shov	struction 1 – Perm ving a stop aspect/	ission to pass EO stop indication a
10 Km/Signel/Fritm	1.11 Km/Signal/From/To	1.12 Km/Signal/ho
Run with a maximu	m speed of	
x.31 Km/h/Mah	from x32 Location Km/Signal	to k33 Location Km/5
Is exempted from i	running on sight	
Set SR speed to	s	et SR distance to
Additional instructions	x.61 Km/h/Mph 8.65	x56 m
(9)	x.91 Freelext	
M ID of Driver	N ID of Issuer	O Time
A Train/Shunting movemen	it No B Date	C Location of issuer

What are Digital Instructions?

Today:

Signaller writes instruction (paper) Signaller dictates instruction to driver Signaller Driver reads back Driver instruction Signaller and driver share unique identification Signaller opens signal

Tomorrow: digital instructions (DI)

What are Digital Instructions ?

ODICEO RECETTE METIER	01/06
Liste des incidents	A Mesures de pr
Incident PN PN 495 - SAL2 - RO Lorient - Quimper TN	Renseignements utiles :
Incident PN PN 492 - SAL2 - RO Lorient - Quimper TN	N° du PN ; km ; Lieu ; Ligne ; Autres renseignements permettant la localisation ; Nature du dérangement ; Coordonnées de la personne avisar
Incident PN PN 493 - SAL2 - RO Lorient - Quimper TN	Disposez-vous d'une
Incident PN PN 475 - SAL2 - RO Lorient - Quimper TN	Oui
Alarme niveau 4 - Incident PN PN 486 - SAL2 - A4 - DC Lorient - Quimper TN	La consigne « Mesures en relation avec le service des
Incident PN PN 489 - SAL2 - BB Lorient - Quimper TN	Oui
Incident PN PN 472 - SAL2 - RO Lorient - Quimper TN	Utilisez la commande manuelle
Incident PN PN 470 - SAL2 - RO Lorient - Quimper TN	La commande manuelle est-elle efficace ?
	Oui
	Appliquez la consigne rose pour la circulation des trains Donnez aux conducteurs S'il s'agit pour un PN à SAL 4 d'un dé nature d

6/2023 16:43:46	Lorient	.
protection du PN prises 🛕	Journal de l'incident : Fiche 8.1	
	01/06/2023	
✓ Avis à lancer : * COGC	✓ 16:37 Incident créé par	
ant Agent mainteneur SE	16:37 Lorient	
* Agent mainteneur voie	16:37 Début de l'incident, le 01/06/2023	à 16:37.
	16:37 Aucune circulation à l'approche, a à l'arrêt.	u passage ou
ne commande manuelle du PN ?	✓ 16:38 Fermeture des signaux convenable	s : C2
Non	16:38 PN nº 495, Km 660,583, SAL2, Li Quimper TN	igne Lorient -
	16:38 Lieu : PN nº495, Km 660,583, Lorient - Quimper TN	SAL2, Ligne
es PN » autorise-t-elle son utilisation ?	16:38 Nature : Raté d'ouverture	
	16:38 Avis au COGC le 01/06/2023 à 16:	38
Non	16:38 Avis au service de la maintenance à 16:38	le 01/06/2023
	16:38 Il n'y a pas de commande manuelle	e du PN
Non		
irs un ordre RATO de marcher avec prudence Motif : raté d'ouverture.		
dérangement assimilé à un raté d'ouverture, préciser verbalement au conducteur	la	
e de l'anomalie (barrière de sortie ouverte, cassée,)		
\checkmark		•
dépêche agent mainteneur SE) sans gardiennage provisoire ?	🖵 🚽 💦 (CED) 🛃 🚛	ě
		•

What are Digital Instructions?

RATO - 0 ordre(s)
NOUVEL ORDRE
RATO
Lorient - Quimper TN LC
Ordre est donné su conducteur du train Sens de circulation
au sur la voie
de marcher avec prudence aux abords du PN nº 495 km 660,583
situé entre 🔍 🕈 et
(points facilement repérables)
Motif
Raté d'ouverture
Bris de barrières
Obérangement des pictogrammes du PN piétons
Dépêche n° 105
O délivré directement
⊖ transmis numériquement
GUID : 646501e8-2168-4b23-b960-3fd09ba2c92c
ASSUREZ-VOUS QU'AUCUN ÉVÈNEMENT EN COURS NE S'OPPOSE À CETTE OPÉRATION
ENVOYER ENREGISTRER

×

Why Digital instructions?

afety	 Instruction received as sent Instruction sent to the right train Assisting with correct application
ctuality	 2-3 min gain per instruction delivery

- Reducing language barrier
- Automatic translation possible

Efficiency

• Signaller needs less time to deliver instructions

Long Term Vision

Like for C-DAS, Digital Instructions via SFERA would aim to become a *de facto* standard through adoption of the respective members (there are at least 8 different projects in Europe).

ERA wishes to define an interoperable digital protocol for European Instructions. The SFERA protocol has been proposed as the harmonised solution.

Architecture

Main Principles

Board and ground DI functions can be independent from TMS and DAS-OB functions

DI data flow concentrates on the delivery of the instruction in structure and content

Additional functions could be included in the DAS data flow. Examples:

- Notification to open DI function
- **Application Reminder**
- Ensuring DAS advice does not contradict instruction

Even though the protocol is unique, DAS and DI data flows can be separated

Where are we?

Task Force established in February 2023
Experts from DI projects of SFERA members
Scope defined

List of Additional requirements to SFERA established
1st level of prioritisation

November 9th: Data models of DI projects to be shared/compared
Next step: defining the core data model for the instruction
Aim: first level of harmonisation

Define new processes and use cases Adapt existing use cases (e.g. handshake) Focus on priority requirements

Define message payloads (DI and DAS dataflows)

12:00 Light lunch

- **Welcome by UIC Director (Jean-Michel Evanghelou)** 12:40
- 12:45 **Introduction: status of SFERA (Daniele Arena)**
- 13:00 **Planned/Working implementations**
- **Adapting the Common Interface to C-DAS operations (Thomas Pynthe)** 13:50

14:05 Break

- **Looking ahead: Digital instructions and SFERA (Sébastien Dislaire)** 14:25
- 14:40
- 14:55
- 15:10
- 15:35
- 16:15 **Fair/Networking**

17:30 End

Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset) The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers) Mini-workshops on SFERA interoperability, subgroups (Thomas Sutter, Alain Wenmaekers)

12:00 Light lunch

- **Welcome by UIC Director (Jean-Michel Evanghelou)** 12:40
- 12:45 **Introduction: status of SFERA (Daniele Arena)**
- 13:00 **Planned/Working implementations**
- **Adapting the Common Interface to C-DAS operations (Thomas Pynthe)** 13:50

14:05 Break

- 14:25 **Looking ahead: Digital instructions and SFERA (Sébastien Dislaire)**
- \rightarrow 14:40
- 14:55
- 15:10
- 15:35
- 16:15 **Fair/Networking**

17:30 End

Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset) The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers) Mini-workshops on SFERA interoperability, subgroups (Thomas Sutter, Alain Wenmaekers)

Benoît Bienfait Benoît Abisset X2Rail4 - Alstom

X2Rail4 Conclusions

SFERA and X2Rail4 Joint work towards the next TSI

DAS SFERA Workshop 8/11/2023

Agenda

- **1**. Logical Architecture (basic design criteria)
 - 2. Focus on the track/train communication interoperability principles
 - 3. Exchanged data
 - 4. Joined group achievement and next steps

Logical Architecture

D a

122

System architecture

Design criteria

Interchangeability

- The Logical Blocks shall be interchangeable •
- Only the interfaces between the Logical Blocks will be standardised

Flexibility

- The Logical Blocks may not be split.
- There are several Physical Architecture Candidates
- The Logical Blocks may be implemented on separate cubicles (FFFIS interfaces). lacksquare
- Several Logical Blocks may be implemented on the same cubicle (FIS interfaces)

Incrementability

- The Logical Blocks are defined to permit a smooth migration across the different GoAs (from GoA1 to GoA4) •
- Extensibility
 - New Logical Blocks supporting other functions than ATO may be added without jeopardising the architecture nor the track/train communication interoperability principles
 - Common Logical Blocks will remain (LOC, REP, PER) \bullet
 - New layers may be added if additional Digital Map data are needed

Logical Architecture GoA1

124

1 (with DAS) Logical itecture QA Q (7

Architecture Logical GoA2

O (up to GoA4) Logica Architecture ATC

127

Φ with Signal Architecture 4 σ GoA U \bigcirc ATO (up to Converter) Lo

128

Main assumptions on system architecture

Design criteria

Interchangeability

- The Logical Blocks shall be interchangeable
- Only the interfaces between the Logical Blocks will be standardised

• Flexibility

- The Logical Blocks may not be split.
- There are several Physical Architecture Candidates
- The Logical Blocks may be implemented on separate cubicles (FFFIS interfaces).
- Several Logical Blocks may be implemented on the same cubicle (FIS interfaces)

• Incrementability

- The Logical Blocks are defined to permit a smooth migration across the different GoAs (from GoA1 to GoA4)
- Extensibility
 - New Logical Blocks supporting other functions than ATO may be added without jeopardising the architecture nor the track/train communication interoperability principles
 - Common Logical Blocks will remain (LOC, REP, PER)
 - New layers may be added if additional Digital Map data are needed

	Logical Blocks
٠	 Repository Manages the interoperable track/train communication
	• Determine the appropriate track side server (transactors) in all situations (wake-up, border crossing, RU change,)
	 Acquire all the data required for the train operation (Mission, Train composition data, Time table information, foreseen routes, track plan data, etc) Check the operation data consistency.
	 Disclose the relevant data to the other on-board Logical Blocks according to their subscription
•	 Localisation Determine the train location based on GPS coordinates and base on the distance from the beginning of the occupied Segment Profile
•	 Train Protection ETCS-OB mandatory Logical Block
•	 Driver Advisory System (SFERA) Gives advisory speed profile to the driver
•	 Automatic Driving Module Driving according an optimum speed profile Supporting traction/brake based on the SS-139 interface Recovered from GoA2 (TSI 2023)
•	 Perception for obstacles and environment detection Replace the eyes and other sensors of the driver
•	 Automatic Processing Module Replace the brain of the driver Inform the ETCS-OB about obstacles not detected by the track circuit s or axle counter.
•	 Signal Aspect Perception and Signal Converter (optional) To be used when the ETCS is not yet installed trackside

Agenda

1. Logical Architecture (basic design criteria)

- Focus on the track/train communication interoperability principles
- 3. Exchanged data
- 4. Joined group achievement and next steps

GoA4: ERTMS / ATO (Up to GoA4)

Scope of REPOSITORY

- 1. Request MP/JP,
- 2. Request SP if not already stored or obselete,
- **3.** Check version and consistency of MP/JP/SP,
- Check consistency between JP path and ETCS linking information, 4.
- **1.** Safe path from the current train position to the current EoA
- 5. Store passed segments for future use.
- Define the reference location for 1D Localization (not ETCS), 6.
- 7. Place the data of each segment in this unique reference location.

JP	: Journey Profile
MP	: Mission Profile
SP	: Segment Profile

Agenda

- **1**. Logical Architecture (basic design criteria)
- 2. Focus on the track/train communication interoperability principles
- Exchanged data 3.
- 4. Joined group achievement and next steps

Segment Profile Static

Journey Profile JP:

Segment Profile Static overview

Segregate data of each segment into a layered architecture

Automatic Processing Module APM: ATO: Automatic Train Operation ADM: Automatic Driving Module DM: Digital Map SCV: Signal ConVerter REP: REPository **DM Conceptual** Data Model

Common Topology Profile overview

Opportunity: Reuse SS126 to create the driving profile

from SS126

- ATO : Automatic Train Operation
- EB : Emergency Brake
- End of Authority EoA :
- Level Crossing LX :
- SB Service Brake •
- Segment Profile SP •

Signaling Profile

Driving Profile

Environnent Profile

Geometry Profile

Common Topology Profile

Opportunity: REP to merge static and dynamic data

APM:	Automatic Processing Mod
ATO:	Automatic Train Operation
ATO-AV:	ATO - Vehicle
DM:	Digital Map
LOC-OB:	Localization On-Board
SCV:	Signal ConVerter
REP:	REPository

Opportunity: Reuse the common topology profile and SS126 to place dynamic data in the Segment Profile dynamic OE

ATO):	Automatic Train Operation
JP	:	Journey Profile
OE	:	Operational Execution
SP	•	Segment Profile

Mission Profile

Program Name - Month/Year (tool "Insertion / Header Footer)

Train Data Set

Program Name - Month/Year (tool "Insertion / Header Footer)

Number of vehicles (a car could be a loco or a wagon)	
Max force applicable without breaking the couplers	
Acceleration limitation (for passengers comfort)	
Jerk limitation (passenger comfort)	
Train length	
Train Total mass	
Brake weight/percentage on the entire train;	
Number of wagons/axels with gradually releasable brake	
Train Brake parameters O Number of wagons/axels with particular brake type (iron shoe, composite shoe, disk brake)	
Number of wagon/axels with particular brake position (G,P,R)	
Number of working locos	
Number of wagons with a liquid load	
Number of wagons with solid load	
Number of passengers wagons	
Number of consists	
Jerk limitation (passenger comfort)	
Acceleration limitation (for passengers comfort)	
Train length	
Train Total mass	
Number of EMUs consist	
Number of DMUs consists (includes battery trains; hydrogen trains)	
Brake weight/percentage on the entire train	
Train Brake parameters	
For Gamma type trains: O Brake characteristics for each consist	

Agenda

- **1**. Logical Architecture (basic design criteria)
- 2. Focus on the track/train communication interoperability principles
- 3. Exchanged data

4. Joined group achievement and next steps
Joined group achievements and next steps

- Achievements
 - A common vision on the architecture and interoperability principles
 - A proposal for new data format
 - Communication Session Management Concepts
 - Mission Profile concept
- On-going (to be continued in EURail)
 - Data content definition for Mission Profile, Train Data Set, Journey Profile, Segment **Profiles (Static & Dynamic)**

Program Name - Month/Year (tool "Insertion / Header Footer)

12:00 Light lunch

- **Welcome by UIC Director (Jean-Michel Evanghelou)** 12:40
- 12:45 **Introduction: status of SFERA (Daniele Arena)**
- 13:00 **Planned/Working implementations**
- **Adapting the Common Interface to C-DAS operations (Thomas Pynthe)** 13:50

14:05 Break

- **Looking ahead: Digital instructions and SFERA (Sébastien Dislaire) Conclusions of the joint work with X2Rail4 (Benoît Bienfait, Benoît Abisset)** The beginning of ERJU and its impact on DAS and SFERA (Bart Van der Spiegel) Joint SFERA-railML session (Vasco Paul Kolmorgen, Alain Wenmaekers)

- 14:25 14:40 \rightarrow 14:55 15:10
- 15:35 Mini-workshops on SFERA interoperability, subgroups (Thomas Sutter, Alain Wenmaekers)
- 16:15 **Fair/Networking**

17:30 End

Bart Van der Spiegel Energy manager SFERA WG Infrabel

ERJU and DAS/SFERA

The start of EU-Rail **SFERA User Group**

UIC HQ, Paris 8/11/2023

The ambition: a modern harmonised interoperable European railway system

In line with the Sustainable and Smart Mobility Strategy, the ambition of the Union and Member States, with the support of ERA and Shift2Rail JU, is to create a modern harmonised robust and reliable interoperable European railway system. Such a system is necessary for the rail sector to better address customer needs, maintain safety and digital security, improve operational efficiency and performance, reduce costs, support European rail supply industry competitiveness and increase the speed of adoption of performance-enhancing improvements.

Therefore, in the process of designing the new Europe's Rail Joint Undertaking (EU-Rail), the EC and Member States have agreed that there should be within EU-Rail a dedicated structure - process, governance and resources - to provide a unique opportunity to allow the Rail sector to converge on a strategic vision for the evolution of the Single European Rail Area (SERA).

The System Pillar is the instrument to achieve the ambition

The System Pillar within EU-Rail is the chosen approach to support the rail sector in the development of the strategic vision of the SERA. This vision will be underpinned by a performance-based concept of operation(s), and supported by the necessary functional system architecture. This will build on the lessons learned from the current Shift2Rail JU, but also from other partnerships and programmes.

It is a fact that railways across Europe do not operate in the same manner and utilise many different components and technologies. This includes many different operational rules, assets, components, databases, interfaces and know how. Thus, in addition to the strategic vision, it is essential the System Pillar recognises and proposes relevant migration strategies from those historic systems to a new system i.e. simpler for its customer and operator, integrated, interoperable, modular interchangeable, borderless, technological agnostic operations. Therefore, the strategic vision of the future railway concept of operations and system architecture must recognise historical limitations while maintaining and achieving the ambitious objectives.

DELIVER AN INTEGRATED EUROPEAN RAILWAY NETWORK BY DESIGN

DEVELOP A UNIFIED OPERATIONAL CONCEPT AND A FUNCTIONAL SYSTEM ARCHITECTURE FOR INTEGRATED EUROPEAN RAIL TRAFFIC AND CCS/AUTOMATION

DELIVER A SUSTAINABLE AND RESILIENT RAIL SYSTEM

DELIVER A COMPETITIVE, GREEN RAIL FREIGHT FULLY INTEGRATED INTO THE LOGISTICS VALUE CHAIN

DEVELOP A STRONG AND GLOBALLY COMPETITIVE EUROPEAN RAIL INDUSTRY

		0
	SYSTEM PILLAR	
••	OPERATION CONCEPTS	AL FUNCTION SYSTEM ARCHITECT
	A SINGL BODY F SECTO	E COORDINATING FOR THE WHOLE OR EVOLUTION
	OPEN INTERFACES T OTHER TRANSPORT MODES AND BUSINESSES	TO SYSTEM REQUIREME SPECIFICAT
	DEPLOYMENT	GROUP
	FUTURE SOL	UTIONS DEPLOYED I SCENARIOS, BE

EUROPE'S RAIL:

ONE INTEGRATED R&I PROGRAMME

D IN A COORDINATED AND CONSISTENT WAY AT EUROPEAN LEVEL, TAKING INTO ACCOUNT ALTERNATIVE ROLLOUT BEHAVIOURAL AND ORGANISATIONAL CHANGES, SYNERGIES WITH OTHER MODES OF TRANSPORT

An Innovation Pillar: and a System Pillar

- The System Pillar builds its specifications on solid foundations of known/proven technology
 - Project timing under control, no technical "surprises"
- The Innovation Pillar searches in parallel but independently for interesting technological innovations
 - 6 "Flagship projects"
 - Proofs of concept, pilot projects
 - New initiatives will be added
- When an innovation is ready for general use, the results are "transferred" from the innovation pillar to the system pillar

Europe's Rail Flagship Projects - Phase 1 Rail Research and Innovation to make Rail the Everyday Mobility

New multimodal TMS system

FP1: MOTIONAL Mobility management in multimodal

environment and digital enablers

Value: EUR 92.6 million Partners involved: 88 **Duration: 46 months**

> Digital automated up to autonomous train operation

FP2: R2DATO

Rail to digital automated up to autonomous train operation

Value: EUR 160.8 million Partners involved: 76 Duration: 42 months

FP3: IAM4RAIL

Holistic and integrated asset management for Europe's rail system

> Value: EUR 106.9 million Partners involved: 94 **Duration: 48 months**

Holistic and integrated asset management

B

10

() @EURail_JU (in) Europe's Rail Joint Undertaking () rail-research.europa.eu

R2DATO

Flagship Project 2: R2DATO - Rail to Digital automated up to autonomous train operation

To meet the increasing demand for transportation of both passengers and freight, FP2-R2DATO will take the advantages of digitalisation and automation to develop the next generation ATC and deliver scalable digital and automatic (up to autonomous) train operation (DATO) capabilities in order to enhance the capacity of the existing rail networks. Tangible results of FP2-R2DATO are expected to be delivered by 2025 on key topics: ATO, ETCS hybrid level 3 and level 3 moving block, digital technologies (5G-connectivity and a standardised onboard ICTplatform), and guidelines and methods for fast and cost-effective deployment and migration of DATO throughout Europe. Through these technical improvements FP2-R2DATO will meet the objectives and impacts defined in the Europe's Rail Master Plan and Annual Work Programme, such as contribute to increased punctuality, reliability and productivity of staff, rolling stock and infrastructure. FP2-R2DATO will pay attention to potential risks, such as acceptance by the public, synchronising with ETCS-deployment and potential legal issues.

R2DATO

Standardisation and TSI input plan **Outputs of the System Pillar = inputs for other processes**

Standardisation and TSI input plan

The role of the "Standardisation/TSI Input Plan" (STIP)

- RAIL activities (SP and IP)
- The STIP can potentially apply to any TSI
- SP Steering Committee meetings,

The STIP will identify a list of proposals for TSI Change Requests (CR) emerging from the EU-

ERA participates in the strategic definition and validation of the STIP in the SP Core Group and

The SP Core Group will finalise the list of SP and IP's CRs (or for ENs) by November 2023

Integrated, system-based approach:

- Identification of inputs and requirements for harmonization
- Assessment (alignment with customer requirements and operational needs)
- Integration in harmonisation process (TSI, Standards, SP documents)

Interface between the research activities (IP, SP, external) and the standardisation and regulation bodies

From national systems towards a European System Pillar

Aims

- Interoperability
- Harmonised operations
- Low Life Cycle Costs
- Single modular framework
- Adaptability
- Migratability
- Safe investment

Layer model of Signalling

Standard Schnittstelle Horizontale Produkte Standard Schnittstelle Horizontale Produkte Standard Schnittstelle Horizontale Produkte

Standard Schnittstelle Horizontale Produkte Standard Schnittstelle

Functional scope of the System Pillar

SFERA-focus is on interface to train on operate train in order to reduce energy consumptions. Other interfaces are partially included.

CCS Functional scope

Tasks and domains

Domain mirror group organisation

Mirror Group members

- provide the voluntary contribution of the individual sector companies
- represent their company (or representative bodies)
- are involved to review/correct/confirm domain work
- can support the work of the domain experts as (unpaid) contributors, provided that they work in the interest of the System Pillar (similar as the domain experts)
 - are organized as a mirror group and/or participate in the domain working groups as contributor role is to align the sector and the domain work, ensuring the sector buy-in and input, supporting the planning and reviewing process for the domain. The role is advisory, consensus is not mandatory, potential disagreement will be visible and recorded.
- Mirror groups are normally based on/or supported by working groups/clusters of one of the technical bodies UIC, EUG, EULYNX, OCORA, UNISIG, etc. Participation in a mirror group is not limited to the members of a any body, but open for all sector companies.

Domain Team persons

- work on behalf of the SP, representing the SP as neutral experts
- report to the SP Coregroup
 - follow and implement the SP processes and workflows
 - responsible to achieve the fulfilment of the special contracts and project/domain targets
- are lead authors and/or give direction to the mirror group or domain working groups
- organise the work, meetings, review processes of the mirror group and the domain
- are the contact persons for all sector experts concerning the domain issues

Domain mirror group organisation

Domain-Group Meetings:

- Weekly Working Meeting (Domain members)
- Bi-Weekly "Status Overview" during working Meeting (Domain members)
- Working Topics leaded by defined responsible domain member

Mirror-Groups Contributors (Railway representatives and optionally Suppliers):

- ٠ railway mirror group topic lead
- Coordination Meetings within the mirror group members (registered to the corresponding topic) •
- Work for special topics (architecture, ATO, localization,...) ٠
- Work plan / work rhythm according to the task defined by the mirror group leader ٠
- **Output for Domain Working Topic Groups** ٠
- Special Meeting within mirror group tbd .

Mirror-Groups Observer (Railway representatives and optionally Suppliers): Will be regularly informed about status and topics (bi-)monthly base ٠

Initialized by the working topics and convened by domain topic responsible and/or domain lead with nominated

Domain mirror group organisation

Task/domain	lead railways	
Central Modelling	Marc Sango	marc.sango@sncf.fr
PRAMSS	Frédéric Henon	HENON@uic.org
PRAMMS	Matthias Moritz	<u>matthias.moritz@deutschebahn.com</u>
External Architecture Support	Loïc Lesauce	loic.lesauce@cesames.net
Task 1 Railway System	Christian Chavanel	CHAVANEL@uic.org
Task 2 Operational Design	Renato Rodrigues	renato.a.rodrigues@capgemini.com
Task 2 Architecture and Release Coordination	Davinder Bhatia	Davinder.Bhatia@networkrail.co.uk
Task 2 Migration and Roadmap	Ernst Kleine	<u>ekleine@ertms.be</u>
Task 2 Traffic Control and Supervision	Roman Treydel	Roman.R.Treydel@deutschebahn.com
Task 2 Trackside Assets Control and Supervision	Mirko Blazic	mirko.blazic@bce.si
Task 2 Train Control and Supervision	Jack Schneider	hansjakob.schneider@sbb.ch
Task 2 Transversal CCS Components	Ralph Müller	ralph.r.mueller@deutschebahn.com
Task 2 Communications	Dan Mandoc	mandoc@uic.org
Task 2 Computing Environment	Patrick Marsch	Patrick.Marsch@deutschebahn.com
Task 3 TMS/CM Design	Marcus Voelcker	marcus.voelcker@sbb.ch
Task 4 DAC/FDFTO System Design	Frédéric Henon	HENON@uic.org

Subtask	Lead railways	
ATO	Xiaolu Rao	xiaolu.rao@sbb.ch
SFERA C-DAS	Thomas Sutter	thomas.sutter@sbb.ch

lead supp	liers
-----------	-------

Ignacio Gonzalez Markus Hirt Markus Wischy Loïc Lesauce Antonella Trombetta Danilo Iovino Bjorn Litzén Bjorn Litzén Udo Golebniak Malik Benameur Hartwig Schuster Vladimir Kampik **Olivier Eudes** Markus Spindler Marco Nanni Roberto Tione

	igtorque@cafsignalling.com
	markus.hirt@urbanandmainlines.com
	markus.wischy@siemens.com
	loic.lesauce@cesames.net
а	antonella.trombetta@hitachirail.com
	salvatore.iovino@hitachirail.com
	bjorn.litzen@alstomgroup.com
	bjorn.litzen@alstomgroup.com
	udo.golebniak@siemens.com
	malik.benameur@siemens.com
	hartwig.schuster@siemens.com
	Kampik.Vladimir@azd.cz
	olivier.eudes@kontron.com
	markus.spindler@urbanandmainlines.com
	marco.nanni@alstomgroup.com
	roberto.tione@Wabtec.com

Vasco Paul Kolmorgen Coordinator, Organisation railML

Joint RailML - SFERA session

Optimizing the data exchange for Driver Advisory Systems: SFERA and railML

Introduction to railML®

Vasco Paul Kolmorgen

rc1ML.org

November 8th, 2023

Summary railML in a nutshell

- railML[®] is an open standard for the exchange of railway data
- Three railML[®] Schemas for *infrastructure*, *rolling stock* and timetable have already been published; interlocking schema in preparation
- The railML-consortium is a union of partners from industry, railway and research, who are working together on the development of the railMLschemas
- 15 programmes are listed on the railML-website which use railML[®] data for exchange
- Development of further subschemas always under consideration
- Participation of new partners and users is always welcomed

Introduction to railML.org e.V. The organisation

- The railML.org e.V. association is the **backbone** of the railML initiative
- Registered in the German register of associations in Dresden.
- The association is open to everybody
- Decisions are made by the **stakeholders** (governance issues) and the **coordinators** (technical issues)
- Input from the **community and the users**

Stakeholders (Governance issues)

Vasco Paul Kolmorgen

railML and the Driver Advisory System use case

- Currently fulfilled by railML[®] schemes
 - Track attributes \rightarrow IS
 - Scheduling attributes → TT
 - Vehicle attributes \rightarrow RS
- Big networks and timetables as well as single operations up to highly complex data fragments
- Constantly changing information (event-based, daily or weekly)

SBBCFFFS ALSTOM RFP STADLER CBB SIEMENS **NFG** INFR/ABEL Right On Track **OSTDEUTSCHE EISENBAHN**

November 8th, 20243

railML releases Schema planning and lifecycle policy

- Clear lifecycle policy for railML schemes like in OS
- Guaranteed: railML 2.3-2.5 and 3.x supported for min. 6-8 years after release
- Extended support for developers with paid partnership
- Support end of each version will be announced at least 2 years in advance

Contribute to the development! Current working groups

Working Group

Infrastructure

Currently encompasses three sub working

- Integrated Traffic Management System
- Schematic Track Planning (SCTP)
- ETCS Track Net (ETCS), joint work wit

Wiki: https://wiki.railml.org/wiki/Infrastructure Forum: https://www.railml.org/forum/index.php?t=th

Timetable

Wiki: https://wiki.railml.org/wiki/Timetable Forum: https://www.railml.org/forum/index.php?t=th

Rolling Stock

Wiki: https://wiki.railml.org/wiki/Rollingstock Forum: https://www.railml.org/forum/index.php?t=th

Interlocking

Wiki: https://wiki.railml.org/wiki/Interlocking Forum: https://www.railml.org/forum/index.php?t=th

Common

Wiki: https://wiki.railml.org/wiki/Common Forum: https://www.railml.org/forum/index.php?t=th

Vasco Paul Kolmorgen

	Schema Coordinator
ng groups: em (ITMS) h Interlocking hread&frm_id=4&	Christian Rahmig (DLR, Braunschweig)
nread&frm_id=5&	Milan Wölke (Bahnkonzept, Dresden)
nread&frm_id=7&	Jörg von Lingen (IfB, Dresden)
nread&frm_id=8&	Jörg von Lingen (IfB, Dresden)
nread&frm_id=6&	Thomas Nygreen (Jernbanedirektoratet)

www.railml.org

Thank you for your attention!

Vasco Paul Kolmorgen Governance Coordinator at railML.org Email: coordination@railml.org

Administrative Team email: orga@governance.railml.org

274

0

Alain Wenmaekers Business analyst SFERA WG Infrabel

Joint RailML - SFERA session

SFERA & RALML

Alain Wenmaekers

Consultant / Business Analyst at Infrabel

8th November 2023

DAS: Driver Advisory System

Tool providing advice to the driver in order to: be on time & save energy

It can be stand-alone or connected to the Traffic Management System (TMS)

Can save up to 10-15% of energy consumption

Helps in fluidifying traffic, by actively avoiding conflicts

Fluidifying traffic through real-time coordination

Timetable constraints **Rolling Stock Characteristics**

TMS

OUTER LOOP

- Updated train characteristics
- Train position
- Status reports

- Infrastructure (nominal and dynamic)

The SFERA protocol
What is SFERA

UIC IRS 90940: Single messaging standard for DAS data exchange between IMs, RUs and on-board devices

- In a multi-RU environment
- Across IM borders

Goals:

Harmonise DAS board-ground communicationsAvoid vendor lock-inAllow IMs to offer the same interface to all RUs

On ERTMS lines On Legacy Class B ATP Lines

The SFERA Working Group

UIC Opt-In Project (since 2017)

Trafikverket

An effort started in 2016

SFERA project: 2017-2019

• SFERA maintenance project: 2021-2023

SFERA Interoperability

Difference in target

RailML

- RailML is a data format
- RailML is popular for exchanging complete train schedules and full infrastructure sets
- RailML can be used as a source format to feed a planning system or TMS

SFERA

- SFERA is a messaging protocol
- SFERA concentrates on a single train and a linear infrastructure
- Compatibility with SUBSET-126 for ATO
- Control trains with a trackside (e.g. TMS) by sending constraints
- Focus on elements a train will encounter which have impact on runtime calculation

SFERA Message structure

- Message-ID
- Timestamp
- Sender
- Recipient
- Correlation-ID

Train optimizes within timingpoint constraints

RailML conversion table

- RailML and SFERA both describe the timetable and infrastructure seperately

 - Timetable <-> Journeyprofiles Infrastructure <-> Segment Profiles
- SFERA uses a different way of linking the data elements
- Data elements in SFERA correlate with RailML
- UIC made a conversion table at the release of SFERA Ed1

RailML conversion table Proposal

- Update conversion table
 - RailML 3 Timetable
 - SFERA Edition 2 update
- Review
- Who?
 - Joint effort

Current conversion table needs to be reviewed by RailML experts

Stay in touch with UIC: www.uic.org Sin Ø O You Tube **#UlCrail**

Thank you for your attention.

SFERA Traction force curves

Mini workshop

SFERA: TRACTION FORCE CURVES

Traction Force Curves are defined in IRS 90940:

As part of Train Characteristics

Sent from Ground to Board

Dependent on:

- Current
- Voltage
- Traction type (Self-propelled, Powerless, Electrical)

How should SFERA improve the handling of Traction Force Curves, specifically for a combination of different traction modes (e.g. battery, hydrogen, diesel, overhead contact line)?

Please provide your input

What parameters can influence Traction Force Curves?

How should degraded situations be handled?

Is it more efficient to calculate TFCs on board? What input is needed?

Subgroups

Thomas Sutter (SBB) & Alain Wenmaekers (Infrabel)

SFERA Interoperability

SFERA Mini Workshop "Interoperability"

SFERA 08/11/2023

Starting Position: Neighbouring Countries may Use Different Setup and Modes of SFERA Implementations.

Country 1

Setup: IM-RU Mode: DAS-O

Country 4

Setup: IM-Train Mode: DAS-O

Country 2

Setup: IM-Train Mode: DAS-C

Country 3

Setup: IM-RU Mode: DAS-C

Interoperability workshop Online session

IRS90940 aims for interoperable DAS-O systems in accordance with ERTMS/ATO.

Which mode does your company aim for and why?

Explanations:

DAS-C: Central calculation of driving advice.

DAS-O: On-board calculation of driving advice.

- DAS-O and DAS-C:

Answers from web participants:

- Infrabel: (shortterm) DAS-C, (longterm) DAS-O
- ERA: In DAS-C how does the centralised system take trainrelated data into account?
- SiemensMobility: C-DAS-O calculate the rec. Speed profile on board on base of timingpoint
- TTG: DAS-O DAS-O Its superior in providing dynamic advice that can adjust based on driver behaviour regardless of network coverage.
- SBB: DAS-O provides speed profiles and calculates on board
- Mtrail: My opinion, a mixture of both. You should keep the timetable/speedprofile as up to date as possible, with the possibility to dynamically add speed advice

Do you see IM-RU or IM-Train as your primary setup, or both?

What are your pros and cons?

Explanations:

IM-RU: Communication from IM via Server at RU (or vendor) to the train.

IM-Train: Direct communication from IM to train.

/ 110 11

IM-RU

SBB

TTG

IM-RU -: very complicated, many involved systems, a lot of sources for errors IM-RU +: IM can enrich

- IM-RU and IM-Train:

Answers from web participants:

IM-Train +: low latency, RU doesn't need infrastrucutre IM-Train -: implementing generell agreed auth rules

How should the crossing from one IM to another be handled concerning interoperability?

Explanations:

IRS 90940 promotes DAS-O but leaves the setup (IM-RU, IM-Train) open.

How can interoperability with other modes (DAS-C) and different setups be achieved?

- What to do:

Answers from web participants:

- SFERA compliance certificate
- SFERA central registry for all SFERA suppliers \rightarrow standardized acceptance phase
- Specify MVP SFERA package for each implemented setup
- ETCS KEY management compareable auth solution
- Interoperability map of SFERA implementations
- Define the minimum set of data
- Definition of usecases how to deal with implemented setups

Interoperability workshop RU & IM group

IRS90940 aims for interoperable DAS-O systems in accordance with ERTMS/ATO.

Which mode does your company aim for and why?

Explanations:

DAS-C: Central calculation of driving advice.

DAS-O: On-board calculation of driving advice.

– DAS-O and DAS-C:

Answe

C-DAS-C Cause the Rim for driving cal

y (dugo

rs:	DAS-O is DAS-C might stepstone to only work in ATO of conflict.	t cose
e goul is to a central culation	NS - C-DAS-O Toms not onle DAS-O DAS-O "Lite DAS edge J Encin Song directly and goal and	ta" for detection
- Jun lotion	SNCB DAS-O USE PATH ENVELOPA TO SAVE ENERGY	
	Trafikverket C-DAS-O Natural split of responsible DAS was mithed something installed in the train.	
	DAS-O coms with Atto/ETCS	

Do you see IM-RU or **IM-Train as your primary** setup, or both?

What are your pros and cons?

Explanations:

IM-RU: Communication from IM via Server at RU (or vendor) to the train.

IM-Train: Direct communication from IM to train.

IM-RU 1171 can offen 1171-RU as excha sekup on regnest sekup of RU

- IM-RU and IM-Train:

How should the crossing from one IM to another be handled concerning interoperability?

Explanations:

IRS 90940 promotes DAS-O but leaves the setup (IM-RU, IM-Train) open.

How can interoperability with other modes (DAS-C) and different setups be achieved?

- What to do:

Answers:

Interoperability workshop Stakeholder group

IRS90940 aims for interoperable DAS-O systems in accordance with ERTMS/ATO.

Which mode does your company aim for and why?

Answers:

Explanations:

DAS-C: Central calculation of driving advice.

DAS-O: On-board calculation of driving advice.

- DAS-O and DAS-C:

C-DASC C-DAS O Ly historical reasons Precisenecs but C-DAS-C possible

2 Higher sonig Cubris DAS-O considering DAS-C-S Boconse of availably

Do you see IM-RU or **IM-Train as your primary** setup, or both?

What are your pros and cons?

IM-ZO C-DAS-C IM-Train

IM-RU(Transmil) More close Match to historial implementation

Explanations:

IM-RU: Communication from IM via Server at RU (or vendor) to the train.

IM-Train: Direct communication from IM to train.

How should the crossing from one IM to another be handled concerning interoperability?

Explanations:

IRS 90940 promotes DAS-O but leaves the setup (IM-RU, IM-Train) open.

How can interoperability with other modes (DAS-C) and different setups be achieved?

– What to do:

(1055 border with on 40 side c.40ASC requires one JP with SP-S from several 10-5 referenced

cross some with on any side c-DAS-C does not unle serve

with on Loft sides c-DAS- & con he with with subsequent units

DAS has to be able To switch below C & O and Ru-TS or IM-TS shall soon A bold. Us will go Jov RU-TS to not dependion IM

to share SP handow

"Subset 125" for DAS-06

sfera@uic.org

Stay in touch with UIC: www.uic.org Sin Ø O You Tube **#UlCrail**

UIC SFERA project

Thank you for your attention.

Alternative itineraries

B

- Last moment lunerary change: possible delay in JP update from TMS DAS: Inaccurate Advice
- ATO risk of stopping point overshoot

Journey profile will include alternative « Segment Profile lists »

1 1 1 1 1 1

