

Welcome to the sixth UIC Digital Conference December 11th, 2020 11:00-13:30 (CET time)

Moderation by Simon Fletcher

Introduction by UIC

Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL

UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL

UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

AWS in Raiway

Cameron Brooks <u>cjbrooks@amazon.com</u> Public Sector Director Europe

© 2020, Amazon Web Services, Inc. or its Affiliates.

Railway Industry Corporate Objectives

SECURITY Protecting customers and workers

© 2020, Amazon Web Services, Inc. or its Affiliates.

CUSTOMER Bring more services and value to customers

Railway Industry Challenges

Increasing competition

Preventive/ Predictive maintenance

Worker attrition and training

Protecting and securing employees and customers

© 2020, Amazon Web Services, Inc. or its Affiliates.

Autonomous Trains

Sustainability

What is Cloud computing ?

resources via the Internet with pay-as-you-go pricing

The term "cloud computing" refers the on-demand delivery of IT

Achieving business value with cloud computing

Cost Savings (TCO)

Moving from Capex to Opex, paying only for what you use

Staff Productivity

Increase staff productivity by focusing on added value tasks

© 2020, Amazon Web Services, Inc. or its Affiliates.

Operational Resilience

Benefit of improving SLAs and reducing unplanned outages

Business Agility & Innovation

Deploying new features/ applications faster and reducing errors

Value

Case study: Predictive maintenance

Challenge

- Ensure quality and safety of network
- Moving from preventive to predictive maintenance to detect anomalies in real time

Solution

 Develop, and deploy innovative computer vision solutions using AWS Machine Learning solutions to analyze pictures from trains

"By using AWS, training time of the model was reduced from 3 days to 10 hours."

Samuel Descroix, Data Analytics Manager

Source <u>https://www.lemagit.fr/ezine/Applications-et-donnees/Applications-et-Donnees-10-SNCF-Reseau-optimise-ses-algorithmes-avec-le-cloud</u> <u>https://www.cio-online.com/actualites/lire-sncf-reseau-entraine-des-algorithmes-de-reconnaissance-d-image-dans-le-cloud-12520.html</u>

© 2020, Amazon Web Services, Inc. or its Affiliates.

Benefits

- Save nearly a million dollars in software, hardware, and maintenance over 5 years
- 71% savings compared to the ondemand using SPOT instances
- Training time of the model was reduced from 3 days to 10 hours

Industry: Railway

Headquarters: Saint Denis, France

Employees: 275,000

Website: https://www.sncf.com

About SNCF

SNCF is the railway operator of France, founded in 1938 and employs more than 270,000 people to help travel 15M travelers daily. SNCF Réseau is a subsidiary of SNCF that manages and operates the infrastructure for the rail network (32,000 km /20,000 mi of routes).

Case study: Improve service reliability and innovation

Challenge

• How to utilize data from different sources to improve service reliability and innovation

Solution

- VR FleetCare ingests their Internet of Things (IoT) data using AWS serverless services
- VR FleetCare then simplified reports using AWS data analytics and machine learning to store and analyse its data

"With the AWS cloud, we achieved cheap storage, great flexibility and scalability"

Veli-Matti Ojala (Solutions Architect – Data & IoT, VR FleetCare)

Source https://www.youtube.com/watch?v=fpDwV5wge k

© 2020, Amazon Web Services, Inc. or its Affiliates.

Benefits

- VR FleetCare launches new projects ten times faster using AWS as compared to their on-premises configuration
- VR FleetCare is using reports to do predective maintenance to detect anomalies before it happens

Industry: Railway

Headquarters: Helsinki, Finland

Employees: 7,500

Website: https://www.sncf.com

About VR

VR Group, commonly known as VR, is a government-owned railway company in Finland. VR's most important function is the operation of Finland's passenger rail services with 250 long-distance and 800 commuter rail services every day.

VR FleetCare offers VR group and it's customers maintenance and modernization services.

Case study: Mobility as a Service

Challenge

• Mobility landscape in the cities is gaining complexity, citizens have a lot of options: car-, cycle-, and scooter-sharing, private vehicles, licensed taxis, and public transport.

Solution

 Mobility-as-a-service (MaaS) technology is helping residents and visitors in Berlin, Germany have access to the Trafi platform as single destination for all their transport requirements.

"Thanks to AWS, we can deploy a new solution—including dozens of different services, databases, and other infrastructure resources—in less than a day." Benediktas Poviliunas, Head of Engineering, Trafi

Benefits

- Focus on development of the product, continious innovation due to new services launched by AWS
- Reduced infrastructure management and cost

Trafi |>>

Industry: Mobility Startup

Headquarters: Vilnius, Lithuania

Website: https://www.trafi.com/

About Trafi:

Trafi is a mobility startup, headquartered in Vilnius, Lithuania. Launched in 2007 Trafi offers cities the possibility to connect all mobility services to one single platform where users can not only check itineraries but also book their tickets and trips.

Case study: Cost optimization with cloud computing

Challenge

Deutsche Bahn (DB) found that \bullet operating it's own IT infrastructure is no longer the core business of an IT service provider within the DB Group and should therefore be completely terminated as inhouse production.

Solution

• Decision to migrate to the cloud in 2017, over the years migrating around 450 applications, legacy systems and business critical applications like SAP

"Overall, migration into the cloud is well worth it for all applications. The business case refinances itself within three years." Robert Arnhold, Program Director of ShapeIT, DB Systel

Source https://digitalspirit.dbsystel.de/en/rapid-cloud-migration-a-preliminary-assessment/ cloud-migration-a-preliminary-assessment/

© 2020, Amazon Web Services, Inc. or its Affiliates.

Benefits

- Moved from hierarchical organization to agile cloud and DevOps teams
- Empowered innovation
- Increased flexibility and reliability, ressources available on demand
- Operational cost savings overall >20%

Industry: Railway, Logistics

Headquarters: Frankfurt/Main, Germany

Employees: 324.000

Website: https://www.deutschebahn.com

About DB

DB own IT provider DB Systel is driving digitalization across DB. It has approximately 5,000 personnel, who are employed across its three main locations: Frankfurt, Berlin, and Erfurt.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Next steps

- Best Practices to a successful cloud migration
- 1. Get Stakeholders and Senior Leaders Aligned
- 2. Set Top-down Quantifiable Goals
- 3. Trust the Process
- 4. Choose the Right Migration Pattern: The 7 R's

Thank you.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL

UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

MCLedger Presentation 6th UIC Digital Conference-December 11th

12/11/2020

ecopms

ECOPMS project presentation

ECOPMS Smart digital platform for eco-responsible logistics

GIE ecopms

POUR UNE LOGISTIQUE MULTIMODALE RESPONSABLE

ECOPMS, what ambition?

ECOPMS is the simplest digital solution for managing alternatives to road transportation.

We allow all professionals to use multimodal rail and river transport as a "green" alternative to the road.

Ledger

ECOPMS Project

Digital

ECOPMS Smart digital platform for

Innovative: AI & Blockchain

Ledger 4

Multimodal transport

Mutimodal transport is a logistic solution for a greener transport

Source: ecologique-solidaire.gouv.fr/transport-combine, 2020

Ledger

Our Goals

Promote the use of multimodal solutions via digital technology rather than using the road as the only mode of transport

Make better use of existing infrastructures with digitalization (without heavy investment)

Increasing cost competitiveness with other transport modes

Ledger

6

Control tower

ECOPMS works as a digital control tower facilitating the use of rail, river & road to save as much Co2 as possible

ECOPMS is a scalable platform with the ability to aggregate and deliver content from other logistics solutions

Information tracing, data sharing & exchange

Readability & Cost control (wagons, damage, penalties)

Ledger

Ecopms Customers

*Industrials such as Danone, Nestlé-Waters, Michelin, BASF... representing for us about 10K potential customers over EU

Operating model of Ecopms

Ledger

Direct ROI for our first clients

Higher productivity > integration of Supply Chains - Reduced workforce, cost cutting

Better use of information = Quality improvement = Cost reduction

5 to 20 % of the tender: Transport Procurement Cost Cutting **10 to 25 %** of these costs: Internal Operational Cost Reduction

Better access to the Multimodal offer -Call for tender management

Better information results improved reliability and greater visibility

Ability to apply a bonus-malus policy Improved carbon footprint (linked to the CO2 value)

0 to 5 % of the Transport Global Costs **30 %** Carbon footprint

More options for transport (multimodal) offers **Cost Savings** and **Greater Efficiency**

Ecopms Awards

Winning project as part of Investment program of the future (PIA) operated by **ADEME**

Presented by H2020 Smart Rail Project (636071) at COP 21

Project labeled by **NOVALOG**

Project with EIP Label by SYSTEMATIC

<u>SMART</u>≫RAIL

Demo product : ECOPMS

Watch the video of the Manufacturer / Industrial version Platform

Ledger

Contacts

Olivier Maurel – CEO

<u>olivier@mcledger.io</u>

+33 (0)6 82 59 85 98

Françoise Meurillon - CFO francoise@mcledger.io +33 (0) 84 21 18 47

ECOPMS appendices

Our product : ECOPMS Forwarders version

Watch the video of the freight forwarders version platform

Ledger

Manufacturer / Industrial Use Case

"Choice of rail transport made simple and efficient"

Challenge

- **Negative experience:** too specific, low reliability, not integrated with the supply
- Conditional usage: if it's convenient and good for my carbon footprint
- Complexity interface in rail transportation are the key factor for efficiency

Solution with ECOPMS

- A single place to manage rail flows from tender to execution
- All players in the supply chain share information, adding visibility
- The platform can interface with production ERPs and transport tracking systems (one-stop shop, customs)
- Wagon fleet management fully integrated allowing to minimize repair cost

- Higher productivity through integration
- Better reliability due to better visibility
- Ability to apply a bonus-malus policy Improved carbon footprint

More options for transport - Lower cost and

Freight Forwarder Use Case

"We will offer multimodal transport if it's as simple as road transport !"

Challenge

- Hard to know what is available
- You have to be **an expert**
- Rail is **complicated**, **unreliable**, and availability information is **not readily** available
- Yes, if it's convenient because customers are interested

Solution with ECOPMS

- A single place to find the market information from the RUs
- Strong integration with the supply chain
- Wagon fleet management including maintenance
- The platform can interface all transport tracking systems (one-stop shop, customs) and offer **360 visibility** of operations

Results

- **Higher productivity** through integration
- Better customer satisfaction due to better visibility
- Higher profitability, lower cost

Ledger

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) **Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS)** Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL

UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

JSC Research & Design Institute for Information Technology, Signalling and Telecommunications on Railway Transport

BIG DATA BASED TIMETABLE MANAGEMENT

Alexey Ozerov Head of International Department, NIIAS

VI UIC DIGITAL CONFERENCE 11 December, 2020

Big Data BIM	I / GIS
DIGITAL	CORP
ΑΙ	Augm

BIG DATA IN RAILWAYS

Big Data in rail industry:

- Customer profiling and train operator's marketing and revenue management activities;
- Passenger demand forecasting and transport planning;
- Network and traffic optimization;
- Predictive maintenance and asset management;
- Predictive analytics for safety monitoring, analysis and planning.

Big Data benefits:

- Rapid insights from disparate sources of information to help improve asset availability;
- Reduction of service delays caused by unplanned outages;
- Reduction of human impact;
- Maintenance cost reduction;
- Improvement of railway passenger and freight services;
- Transition to adaptive planning.

Big Data constraints:

- Big Data will still require data scientists and railway experts to validate models generated by machine learning applications;
- Big Data will not convert manual reporting systems into automatic ones;
- Big Data cannot process and create information without meaningful data.

- Railway infrastructure (location of signals, switches, type of track, etc.);
- Train running times between stations;
- Station intervals;
- Technical stops;
- Arrival and departure time;
- Volumes of passengers, etc.

Infrastructure Manager

HOW CAN WE AUTOMATE/DIGITALIZE TIMETABLING?

Railway timetable must provide competitive travel times and at the same time be able to withstand delays, perturbations, and variations in operating conditions without losing functionality, to achieve a high service level during operations.

[M.P. Goverde and Ingo A. Hansen, Delft University of Technology, Netherlands]

Train timetable is a crucial document for organization of railway traffic. It describes railway infrastructure occupation of train movements in time and space.

[Pei Liu and Baoming Han, Beijing Jiaotong University, China]

Timetable is a key reference document for railways, which regulates all the aspects of operations at all levels of railway management, representing a network-wide plan of operations and being the basis of transportation management. At the same time it is the totality of schedules that may change and improve during a timetable lifecycle.

Timetable

BIG DATA AND DATA SCIENCE METHODS

- ⊘ Internet of Things (IoT)
- ⊘ Cloud computing
- Data Science \bigcirc

- ⊘ Big Data
- ⊘ Machine Learning
- ⊘ ANN ...

Data processing requirements for Data Science methods application:

- Data validation;
- Noise analysis, outliers removal;
- Updating and data cleaning;
- Data conversion;
- Data standardization;
- Validation of function types using historical data.

The tasks that may be solved with the aid of automated intelligence and Data Science methods, including those based on self-teaching, at various stages of a timetable lifecycle:

- Increase of timetable robustness (resilience to external disturbances);
- Possibility of constructing a common timetable for network parts belonging to several countries and for international transport corridors;
- Reduction of human factor impact on timetable construction and adjustment;
- Introduction of predictive properties in relation to possible failures, disturbances, as well as reduction of response time towards such disturbances, thus resulting in less costs of mitigating timetable deviations.

TIMETABLING VS AUTOMATED TRAFFIC SUPERVISION

Ongoing migration to automatic train supervision for the introduction of AI-based timetabling and timetable management

BDTM DATA MODEL

Parameters	Data type	Factors	Nickname	Methods ML/DS			Input	Hidden
		Track layouts of	TopTrackUpd	ANN				$\langle \rangle$
		crossing or		Para	ameters	Factors		
		overtaking stations				Grade of switches		
			AlarmsAndRel			Length of entry bottleneck		
		Signalling and		Trac	k layout	Length of receiving and departure		
		telecommunications				track		
Interval		installations				Location		
of trains		Interlocking types	CtrlSwSig	Trair	n weight	Composition of types of cars	Fosturo	Cold
crossing;		interioeking types				Type of locomotive	reature	Data
		Location of signals	FamousPoints	Trair	n length		Interval of	
interval		switches and station		Truno of		Type of locomotive	train crossing;	
of non-		dispatcher rooms	PlanProfRP	Permitted train speeds	Enumeration of traction reatures	John Marine Land		
						Interval of		
Simultaneous	Integer	nteger Horizontal and PlanProfRP Permitted to vertical alignment of			Track specialization	non-		
arrivai;				Length of track circuits	simultaneous			
		stations approach		Signa	lling and	Presence of brake charging and test	arrival;	+
interval		sections		telecom	munications	operation device	Interval	
of trains			MayCroadTrai	installations at station	Length of bottleneck	of departure		
departure and		Permitted trains	iviaxspeed irai			Electrification	and	
consecutive		speeds			c • • •	Distance between end of the track	consecutive	
trains arrival		Type and grade of	SwTypeMark	Location	n of signals,	and depot	trainc arrival	
		turnout		switches	and station	Time spent by locomotive crews in		
			TechOsnPearSt	aispate	iner rooms	the depot	irain running	+
		Signalling and	ation			Computer-based interlocking	time	
		telecommunications				Electric interlocking	Headways with	
		installations on		Signalli	ng facilities	Electronic token system	automatic	+
		adjoining open lines			Light signal	blocking		
						ERTMS	BIOCKING	

Warm

Data

+

+

+

www.vn	iia

BDTM DATA MIND MAP

	Plan and profile			
	Length of open line			
	Permitted train speed	\sim		
Traction features	Type of locomotive			
Composition of cars (types of cars)	Train weigth			
Type of locomotive	Train length	Train running time		
Composition of cars (types of cars)	Time related to speed restriction			
	Type of track			
Composition of cars (types of cars)	Type of cars			
Number of cars		Interval of trains		
Oversize	Permitted train speed	crossina: interval		
	Type and grade of switches	of non-simultaneous		
	Signalling and telecommunication facilities	arrival; interval of		
	Switche and signals control mode	trains departure and		
Time spent by locomotive crews in the depot	Location of signal, switches and station dispatchers rooms	arrival		
track and depot	Horizontal and vertical alignment			
	of staion approach section			
Length of entry bottleneck	Track layouts of crossing stations			
Length of receiving	Signalling and telecommunication	Assessment		
and departure track	installations on adjoining open lines	of impact		
Grade of switches	Natural phenomena	of dicturbances		
Location	Load balance			
	Wheel geometry			
	Temperature of axle box	Safety of cars		
	Real weight of rolling stock			
	Temperature of brake rotors	~// //		
Time spent by locomotive	Loading gauge	-/		
crews in the depot	Temperature of wheels	-		
Length between end of the	Location of signals, switches			
	and station dispatchers rooms			
	Switches and signals control mode			
	Track layouts of grossing station	Technical stop		
and departure track	ITACK layouts of crossing station			
Composition of cars (types of cars)	Staff at the station			
Type of locomotive	Train length			
Iraction features	Type of locomotive	/</td		
Length bottleneck		//		
Train brake testing installation		- /		
Length of tracl circuits	Signalling and telecommunication			
Electrification of railway stations	installation at station			
Electronic token system				
Light signals	Signalling facilities	/		
Computer-based interlocing	Number of track on open line	Arrival time		
Electric interlocking				
FRTMS	Duration of downtime			

UIC IRS POTENTIAL SCOPE

Standardization of the terminology and the concept of a timetable life cycle with specification of the stages where the recommended methods can be applied

Formalized description of timetable parameters and factors affecting them

Description of the requirements for databases and data storage tools (to secure transition to an adaptive timetable managed using advanced approaches)

Description of the requirements for hardware and software implementing Data Science methods (including mathematical and algorithmic components) for specific timetable aspects

Requirements for IT implementation of a timetable based on new methods

Requirements for safety checking of timetable solutions generated by Big data methods

Staff instructions for dealing with a timetable management system based on adaptive principles

Requirements for formalization of a data model related to a through planning and timetable generation and including all participants of the process

Requirements for labeling of a formalized data description of timetable parameters and factors affecting a timetable

JSC Research & Design Institute for Information Technology, Signalling and Telecommunications on Railway Transport

Thank you!

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL

UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

DIGIN II Connected level crossing

Parinaz Bazeghi

Digital Project Manager

December 2020

DIGIM II

DIGIM II project was launched in 2019

Eight participating members: SNCF, SBB, Network Rail, RAI, Via Rail Canada, Ferrovie dello Stato Italiane, CARS and Infraestruturas de Portugal and partnership with Dassault Systèmes.

The objective is to improve safety at level crossings by connecting them to their surroundings.

DIGIM II

The emergence of new technologies and **connected infrastructures and vehicles** in recent years offers a new opportunity to increase safety at level crossings.

Advanced Driver Assistance System(ADAS): "vehicle-based intelligent safety systems which could improve road safety in terms of crash avoidance, crash severity mitigation and protection, and automatic post-crash notification of collision."¹

DIGIM II

We defined a proof-of-concept of a new ADAS to make cars act safer around level crossings, modeled it digitally in a 3D simulation software (3DEXPERIENCE platform) and evaluated its performance under different scenarios.

Level crossing is connected to cars to transmit them necessary information including level crossing's status.

If no action or insufficient action is taken by the driver in case of a closed level crossing, the car will take control of the system(ADAS), slow down and stop safely before the barrier.

The next step

In DIGIM II an example of a simplified conceptual architecture of the system was designed, simulated and evaluated using 3DEXPERIENCE platform.

It showed that several simulation technologies could be connected together within the same digital platform, to define, study and simulate a complex system that connects a level crossing with an automobile.

In the next step, the potential cooperation with a car manufacturer will be evaluated to develop the system and possibly test the product in real environment.

Stay in touch with UIC: www.uic.org Sin Ø O You Tube **#UlCrail**

Thank you for your attention.

Moderation by Simon Fletcher

Programme

Introduction by UIC Introduction by François DAVENNE (UIC General Director) Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards Introduction by Francis BEDEL

UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

Customer Service Automation for Railways

UIC Winner in the Productivity Category

December 11, 2020

Proprietary and Confidential | Mindsay © 2020 All Rights Reserved

Solution Overview for Rail Companies

PART 1

B mindsay

Global leader in Conversational AI for the Travel & Mobility industries

offices
Paris
New York

OURS BOTS HAVE HELPED

6M+ customers

Proprietary and Confidential | Mindsay © 2020 All Rights Reserved

FOUNDED **2016**

EMPLOYEES

40+

ARR GROWTH
4.5X/YR

FUNDING \$12M

ENGINEERS 30%

CLIENTS 30+

We help customer service teams overcome common challenges

- Automate large volumes of customer requests
- Eliminate time-consuming processes
- Optimize role of human resources

Proprietary and Confidential | Mindsay © 2020 All Rights Reserved

Fully-trained AI chatbots specific to rail & mobility

Why Mindsay for Rail?

Library of Use Cases

Our bots are pre-trained using millions of railspecific conversations. <>

Low-Code Interface

Our platform is designed to allow both developers and business users to easily build, maintain, and improve their bots.

Proprietary and Confidential | Mindsay © 2020 All Rights Reserved

Ability to Connect

Our travel-specific integrations allow you to connect with APIs and existing platforms.

Rail Customer Success Stories & Productivity Use Cases

P mindsay

Exchanges & refunds

Salesforce handover

ಕ್ಷೆ COVID info

Train schedules

Booking

EU Destinations

*P***FAQs**

RESULTS

99% automate rate

TESTIMONIAL

"Mindsay's technology allows us to constantly improve and innovate. Their integration with Salesforce significantly boosts our agents' productivity and has cut down time to resolution. This ultimately allows us to better serve our customers."

Stephan Kramer Customer Service Program Manager, Thalys

E Loyalty program

Departure information

Zendesk handover

RESULTS

TESTIMONIAL

"We've reduced the number of requests our customer support team receives on Zendesk by 50%."

Christine Daugeron Mobile App Director, SNCF

CUSTOMER STORY

ė Aide

0

Application SNCF

? ☆

Bonjour ! Je suis le Chatbot de l'application SNCF. Vous pouvez me poser vos questions sur le fonctionnement de l'appli, comme "comment dématérialiser ma carte jeune?" ou "comment acheter un billet TER?", j'essaierai d'y répondre du mieux possible.

Vous pouvez aussi cliquer directement sur l'un des boutons ci-dessous 😀

50% reduction in customer support tickets

. Write a message... >

Live transit info

 \triangle Alerts

Station issues

D Paying fines

*P***FAQs**

3 RATP RESULTS **\$19.90** saved per customer request Hi! I am RATP's customer service virtual assistant. I am 84% of conversations automated here to help you. Don't hesitate to choose one of the options below or ask a question yourself! 0 **TESTIMONIAL** Lost/Found Object % Start . "Mindsay has shown its ability to develop an Problem at a Station innovative solution while integrating with our technical and regulatory constraints. They've been able to offer solutions for blocking issues while keeping in mind the need to streamline the customer journey." 8

Customer Service Exec, RATP

CUSTOMER STORY

Write a message

Exchanges & refunds

*P***FAQs**

RESULTS

month

TESTIMONIAL

Lyria

CUSTOMER STORY

Lyria

TGV Lyria Franz - Virtual assistant ? -Hello! I'm Franz, I am your new virtual assistant. How can I help you? What can you do? COVID-19 €49 / CHF 55* all year round

.

```
. ■
```


PRODUCTIVITY USE CASES

Cancelation & refunds

Offer travelers automated cancellation and refund options

My train has been canceled and I want a refund.

You can apply for compensation if your train has been canceled or delayed more than 30 minutes.

A

Request a refund online or contact an agent

Request a refund

Contact a support agent

PRODUCTIVITY USE CASES

Change or add information

Change a passenger's name, email, and other personal information using APIs.

PRODUCTIVITY USE CASES

Ticket exchanges

Manage and process passengers' ticket exchange directly from the bot.

How to Get Started with Mindsay

How to get started with Mindsay

Live in 8 weeks

2 Experts needed from your Rail company

Connected to your CRM

STEP 1	STEP 2	STEP 3	
Scoping (2 weeks)	Build & Train (4 weeks)	Test & Learn (2 weeks)	
Scope the use cases and processes you want to automate	Launch first bot quickly with basic use cases and learn from real data	Progressively add more complex use cases	

Proprietary and Confidential | Mindsay © 2020 All Rights Reserved

Thank you!

Contact: sales@mindsay.com

B mindsay

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

WHEEL-RAIL INTERACTION MONITORING & DIAGNOSTIC SYSTEMS

Introduced by Francesco MANNARA **IVM Co-Founder**

IVM – Wheel/Rail Interaction Systems

IVM's mantra is to increase the frequency of the inspection measurements!

IVM – Innovative Vibration Monitoring

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

IVM – Wheel/Rail Interaction Systems

WHEEL/RAIL INTERACTION MONITORING & DIAGNOSTIC SYSTEMS

IVM – Innovative Vibration Monitoring

WHEEL CONDITION

SWAN

Smart Wayside Accelerometric Network

Transto delle are 17.56119 dei 11.655819 Direcolt Legal

WHEEL/RAIL EFFECTS

Dynamic

On Board Train Wheel/Rail Interaction Monitoring

@CTOPUS

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

POWERVE - POrtable WEigher for Railway VEhicles

IVM – Innovative Vibration Monitoring

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

MEASURING THE VERTICAL FORCE DISTRIBUTION ON WHEELS AND WHEELSETS: FINALLY EASY, FAST, ANYTIME&EVERYWHERE!

- IT IS NOMORE NECESSARY TO MOVE THE ROLLING STOCK... (\checkmark) **POWERVE** GOES TO THE ROLLING STOCK
- **POWERVE** IS EASY & FAST! IT MEASURES A ROLLING STOCK IN MINUTES
- **POWERVE** ALLOWS A MORE FREQUENT VERIFICATION OF THE BALANCE
- **POWERVE** COMPARES MULTIPLE MEASUREMENTS OVER THE TIME

POWERVE IMPROVES SAFELY & UNLOCKS PREDICTIVE **MAINTENANCE APPROACHES**

IVM – Innovative Vibration Monitoring

COMPLIANT

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

OWERVE **Ortable WEigher for Railway VEhicles**

Wheel Force Measurement System

Patented & Certified

European Recognitions

European Commissio

DITECFER Railway Innovation Leader 2019 POWERVE

OCTOPUS – Wheel/Rail Interaction Diagnostic System

IVM – Innovative Vibration Monitoring

- Automatic recordings when the train is powered on with remote transfer

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

OCTOPUS increases the frequency of the inspection measurements since it can be **installed** on any in-service operating train.

OCTOPUS doesn't need to **interface** with the on-board systems.

OCTOPUS is able to **locate** any **POI** up to a centimeter accuracy.

OCTOPUS is able to **compare** multiple runnings over the time.

UCIUPUS IIVIPKUVES SAFELLA UNLUCAS PREDICITVE **MAINTENANCE APPROACHES**

IVM – Innovative Vibration Monitoring

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

OCTOPUS – Wheel/Rail Interaction Diagnostic System

DATA COLLECTION

GET DATA YOU CAN

TRUST

Advanced **measuring**

system

SECURITY

Move the data from on board to the processing Cloud

IVM – Innovative Vibration Monitoring

DATA TRANSFER

EFFICIENCY AND

DATA COMPARISON

IN SPACE AND TIME

Compare the data from different **Trains** and several Transits

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

SWAN - Smart Wayside Accelerometric Network

The SWAN system was designed to acquire the accelerations transmitted at the wheel-rail interface, through which the quality of the contact surface of each passing wheel can be defined and evaluated: Wheel Quality Index, WQI. Measurement components:

- 24 triaxial accelerometers based on MEMS technology (10+2 per rail);
- 2 inductive proximity sensors for detecting travel speed of the axles in the measurement area.

IVM – Innovative Vibration Monitoring

MEMS based technology

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

SWAN - Smart Wayside Accelerometric Network

Parameter used for the
calculation of the QWI to the
reference speed (25 km / h)
Mean on the n passages
validated
Classification of the 896
wheels as a function of the
parameter
Threshold values that

indicate the assignment of the

level to the data set examined

SWAN IMPROVES SAFETY & UNLOCKS PREDICTIVE MAINTENANCE APPROACHES

IVM – Innovative Vibration Monitoring

Email: francesco.mannara@ivmtech.it | Website: ivmtech.it

Knowledge to Safety

IVM – Innovative Vi

IVM – Innovative Vibration Monitoring

ivmtech.it

	59, Benedetto Brin Street 80142 Naples (IT)	TÜVRheinland	Management System ISO 9001:2008	Q
S				
		Alient		FX K
the set	4aa		July and the	and and
		in Cours	Strate Carle	
ystems	s for 🛛 🐨			
ilway	Diagnostic	s The second		

ite: ivmtech.it

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

SPEED

Intelligent Marimo Analysis of Railway Accident Risk

SAFE

Reporter: WangZhe

Beijing JingWei Information Technology Co., Ltd.

SERVICE QUALITY

Background & Problem

China Railway Scale Expanding

Railway Network Planning

Railway Development

Over 35,000 kilometers High-Speed Railway

Operating Mileage Exceeding 130,000 Kilometers

成有透道高速铁路 规划通道高速铁路 既有区域连接线/城际铁路 规划区域连接线/城际铁路 规划研究高速铁路 就有单线铁路 就有复线铁路 路有复线铁路 路有复线铁路 Medium and Long Term Planning of China's High Speed Railway Network(by 2030)

The Risks of Railway

Huge Freight yard

OCS

Passenger Station

High Speed EMU

Complex bridge

Long tunnels

Two basic ways to ensure safety

Technology

Management

Put forward the utilization of management data to analyze the railway accident risk.

02 Accident Risks Analysis

Factor A1,A2,A3,A4 are **necessary conditions** for event B.

To prevent B, we should make one of the factor (A1-A4) never happens.

Let's start from here....

Step 1: Identify the risks of an organization

wrong direction

Example : Risks of train reception and departure

Wrongly entered no power zone

.

Step 2: Identify the necessary conditions of each risk

wrong direction

weight

weight

Wrong Block zone transaction

Wrong route preparing

the factors

Step 3-1: Key points explanations

Incident XXX

What?

Wrong but not serious event, like misoperation, duty officer leave without permission, missing items etc.

How?

Revealed and recorded by daily management and inspection.

> Management data

Step 3-1: Key points explanations

Incident XXX

Why?

The famous "300 : 29 : 1".

Heinrich's Law

Light-injury/Noninjury Accidents

Unsafe behavior

Step 4: Handle the real data

More than 20,000 safety supervisory and administrative personnel of the Railway Bureau record all harmless and medium-sized safety incidents discovered by on-site inspection through special mobile app.

500,000*180=90,000,000

Within half a year, the number of data records is over 90 million.

Step 5: We need data warehouse

ETL Processing

Step 6: Data mining

H(I)**Risk assessment function:**

Time Decay Function Model of Newton's Cooling Law:

$$u = \sum_{i=1}^{n} w_i F(i) = \sum_{i=1}^{n} \sum_{j=1}^{m} w_i E(j)T(j)$$

$\frac{dT(t)}{dT} = -k(T(t) - H)$

 $T(t) = T(t_0) \times e^{-k(t_0 - t)}$

Step 7: Data visualization

status of the risks.

The smaller the marimo and the greener the color, the lower the risk level.

Common Risk

The bigger the marimo and the redder the color, the higher the risk level.

Extremely High Risk

Warning appears

There are 19 train management sections under a Railway Bureau's Administration in southern China. Taking two types of accident-prone in train receiving and dispatching and shunting operation as examples within last one year:

449 yellow marimo warnings appears

65 red marimo warnings appears

Help decision making, reduce the probability of risks

According to the warning prompt, the relevant stations have strengthened the crux of management omission, improved the accuracy and efficiency of decision-making, and reduced the number of related accidents by 12% and 8% respectively compared with the same period in previous years.

> train receiving and dispatchi ng

> > 12%

THANKS

FOR

YOUR ATTENTION

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

WHO WE ARE

RAILWATCH

is an IT company for rail freight transport located in Bonn.

We embrace our concept one hundred percent

OUR SYSTEMS

The mobile product: A 4-square-meter plot of land next to the tracks, a power supply, a concrete baseplate, a forklift truck: this is all that is required to set up a RailWatch Pulsar measuring station within one working day. Then you will have access to full data about wagon identity, side views, brakes, wheel flats and noise levels. These measuring stations are suitable for installation next to mainline railways or in the entrance to industrial sites.

The full-service model: Ideal for installation in the entrance to important nodes, with the RailWatch Pulsar+ measuring station almost all important information about the technical condition of a freight wagon can be measured during a train passage. As well as the basic data about the identity of the wagon, comprehensive findings are recorded, including the condition of the wheels and the weight distribution.

RAILWATCH Pulsar+

Our web portal: Your complete data can be accessed here – from fleet level, to train level, right down to per-wagon level. Through repeat measurements, wear trends can be determined and the optimal time for maintenance thus calculated. Of course, damages requiring immediate intervention are also clearly shown.

OUR SYSTEMS

WAGON RECOGNITION

- Optical or RFID
- Wagon type and length, axle count, UIC number, direction of travel
- Graffiti, damages, thermal conditions
- Trailer number, container number, dangerous goods number.

BRAKE BLOCK ANALYSIS

 Brake block thickness (wear incl. recommendations, e.g. wedge-shaped wear)

WHEEL FLAT DETECTION (acoustic)

NOISE MEASUREMENT

THE DATA – DIRECTLY FROM THE TRACKS TO THE ORBIT

© RailWatch 2020

AILWAICH	**									
		E +	# *	Q ÷	a +	*** *	∑	÷	¢ رO	
ard		12/05/20 - 12/07/20 🗎	(⊗	all 🗸	all 🗸	all 🗸	O <u>1·50</u> O	all 🗸	all 🗸	
u.		07.12.2020 13:03	91 80 6185 355-5	RFC 9 - Passau 1		Tank wagon	19			
k		07.12.2020 12:49	91 85 4486 509-3	RFC 1 - Rheintal 3 (rechts)	(.	Intermodal	14	1		
eck		07.12.2020 12:27	91 80 6186 451-1	RFC 1/8 - Aachen 1	-	Bulk	21			
		07.12.2020 12:20	91 80 6185 285-4	RFC 9 - Passau 1		Bulk	43		-	
	0	07.12.2020 11:53	91 54 7386 033-5	Port - Bremerhaven 1	-	Intermodal	26		128	
		07.12.2020 11:39	91 80 6186 492-5	RFC 1/8 - Aachen 1	-	Tank wagon	22			
		07.12.2020 11:36	91 80 6182 507-4	RFC 1 - Rheintal 3 (rechts)	-	Bulk	26	1	-	
		07.12.2020 11:22	92 80 1209 006-6	Industry - Wolfsburg 1	-	Unknown	15		-	
		07.12.2020 10:17	91 80 6189 023-5	RFC 1 - Rheintal 3 (rechts)		Bulk	21			
		07.12.2020 10:15	91 80 6192 009-9	Port - Bremerhaven 1	(•)	Automobile	22	3		
		07.12.2020 10:06	92 80 1209 006-6	Industry - Wolfsburg 1	-	Unknown	7			
		07.12.2020 10:05	91 80 6186 183-0	RFC 1 – Kaldenkirchen 1	-	Mixed	38	2 3	-	
		07.12.2020 09:39	91 80 6193 882-8	RFC 3 - Fulda 1	-	Intermodal	22	6	-24	
		07.12.2020 09:30	91 80 6189 034-2	RFC 1 - Rheintal 3 (rechts)	-2	Bulk	21		12	
		07.12.2020 09:10	91 81 1293 195-4	RFC 3 - Rosenheim 1	-	Intermodal	11		-	
		07.12.2020 08:57	91 80 6192 104-8	Port - Bremerhaven 1	-	Automobile	23	3	-	
		07.12.2020 08:40	91 87 0037 034-2	RFC 7/8 - Braunschweig 1		Mixed	27			
		07.12.2020 08:36	91 80 6186 137-6	Port - Bremerhaven 1		Intermodal	25			
		07.12.2020 07:39	91 80 6193 608-7	Port - Bremerhaven 1	-	Intermodal	26	3		
		07.12.2020 07:35	91 80 6185 210-2	RFC 3 - Fulda 1	-	Automobile	21	3		
		07.12.2020 07:14	91 80 6189 062-3	Port - Bremerhaven 1	-	Intermodal	24		-	
		07.12.2020 07:05	92 80 1271 030-9	Port - Bremerhaven 1	140	Intermodal	27	6	-	
		07.12.2020 07:00	91 80 6193 217-7	RFC 1 - Rheintal 2 (links)	-	Mixed	24		GG	
		07.12.2020 06:44	91 80 6151 094-0	RFC 7/8 - Braunschweig 1	-	Bulk	35			
		07.12.2020 06:41	91 80 6185 358-9	RFC 9 - Passau 1		Mixed	24	2		
		07.12.2020 06:22	92 80 1266 031-4	RFC 1/8 - Aachen 1		Intermodal	22			
		0712 2020 06-17	91 85 4482 001-5	DEC 3 - Eulda 1		Intermodal	26	1		

KAILWAICH

Dashboard

Fleetcheck

Wagoncheck

Traincheck

Watchlist

Blacklist

Billings

measurem	ient				
Measurement time:	06.12.2020 09:00				
Location:	Port - Bremerhaven 1				
Classification:	4363 - Automobile				
Brake block material:	K/LL				
Wagon keeper according to GCU:	RailWatch GmbH & Co. KG				

27 80 4363 749-7

Position of axles/wheels in direction of

...

	4L	4R	3L	3R	21.	2R	1L	1R				
Wheel profile (mm)												
Flange thickness Sd	۲	•			•	•	•	•				
Flange height Sh		٠			•							
Flange slope (qR)			•		•	•		•				
Tread hollowing PH _{R0}	٠	۲		٠	۲			3.1				
Rim thickness	•			•	•			•				
left/right brake block (mm) (Measurement accuracy without guarantee)		•	• •			• •						
Wheel flat		C'		•		C*		•				
Axle load (t)								•				

KAILWAICH

Dashboard

Fleetcheck

Wagoncheck

Traincheck

Watchlist

Blacklist

Billings

CUSTOMER GROUPS

FREIGHT WAGON OWNERS

Freight wagons have **no power**

Supply and do not know a BUS system. Dumb steel objects!

Thus, their condition and the exact time of necessary service are unknown.

RAILWAY UNDERTAKINGS

Each freight wagon must be inspected visually before train departure. Every day, 100,000 freight trains run in Europe.

Special training and manual effort are costly and time-consuming!

INDUSTRY

Freight wagons are not inspected for damage before loading. If any damage is detected before the train departs, it must be unloaded or reloaded.

Thus, the loading and transport processes come to a standstill in a **thousand** industrial companies. Often the industrial product is lost.

OUR USP`s

OWN HARDWARE

RailWatch "Pulsar" is a complete in-house development, including all the components.

 $\{ j \} \}$

In addition to the "RailWatch Orbit", the detection and evaluation software was created and developed in-house. Patent pending!

THANKS A LOT For further information, please contact me.

© RailWatch 2020

-

RailWatch GmbH & Co. KG Schwertberger Str. 14 //53177 Bonn - Bad Godesberg Germany

Phone: +49 228 / 33 88 30 50 Mobil: +49 151 / 25 27 1573 Email: Eike.Westphal@rail-watch.com

Moderation by Simon Fletcher

Introduction by UIC Introduction by François DAVENNE (UIC General Director) **Evgeny CHARKIN (RZD CIO and UIC Digital Platform Chairman)**

Keynote Speakers

Keynote by Jean-Michel MIS (Member of French Parliament and Member of National Digital Council) Keynote AWS: Railway innovation through cloud computing by Cameron Brooks (Public Sector Director Sales Europe)

Presentations

Presentation of ECOPMS project by Olivier MAUREL (CEO MCLEDGER) Presentation of BDTM project by Alexey OZEROV (Head of International Department JSC NIIAS) Presentation of Project DIGIM II- Connected Level Crossing- UIC and Dassault Systems

The fifth UIC Digital Awards

Introduction by Francis BEDEL

UIC Digital Awards 2020 winner in the Productivity category: Mindsay- Presenter: Guillaume Laporte UIC Digital Awards 2020 winner in the Safety category: IVM srl- Presenter : Francesco Mannara UIC Digital Awards 2020 winner in the Safety category: Beijing JingWei Information Technology Co., Ltd- Presenter: WangZhe UIC Digital Awards 2020 winner in the Services category: RailWatch GmbH & Co. KG- Presenter: Eike Westphal

Conclusion

Programme

Thank you for participating in the sixth UIC Digital Conference!

Stay in touch with UIC: www.uic.org Sin Ø O You Tube **#UlCrail**

Thank you for your attention.

