

UIC Workshop «Energy efficiency» Session Operation & Rolling Stock

and and

Christian Gerster, Christophe Gueudar-Delahaye, Johannes Estermann, Matthias Tuchschmid

Impressions

З

Results

DeepDive «EcoStabling»

Modes of activation / deactivation of ecostabling

ACTIVATION go sleep a) MANUAL b automatic by light and speece timer ? GPJ С

DEACTIVATION (Wake up) a) 6 HVAC) Freeze Cleaning Node min (loc lemp C sime table Battery SHS

Solutions and challenges when ecostabling

- Traindriver cabin is also cold
 - a lot of complaints
 - Skip ecostabling in driver cabin
- Only use floor heating in ecostabling HVAC
 - Advantage of noise reduction
- Concept of controlling ecostabling is documented in VöV D-RTE 48610
 - LINK: «Steuerung energieeffiziente Parkstellung Rollmaterial»
 - <u>LINK « Gestion efficiente de l'énergie du matériel roulant en position Parc »</u>

Lost and found page

- Items to exchange on in future workshops

- Setting directions for new trains (Jan Hoogenraad)
 - Key standards missing (Ecostabling, DAS)
 - include optimal design for ecostabling.
 - Standard Communication protocol for wake-up mechanism missing (but see VöV D-RTE 48610)
- Experience with SiC converters (Matthias Tuchschmid)
- Dispatching rules for operations (Jan Hoogenraad)
- Timetable creation for saving energy (Jan Hoogenraad)
- Switch of all not required systems in stabling (Jan Hoogenraad)
- Auto-close doors during ecostabling
- Expectations to new ERJU System pillar energy working group, RS, TMS
- Regenerative braking not allowed in France for Eurostar (45% savings lost)

Results

DeepDive «EcoDriving»

Ecodriving deepdive session (60 min)

Objectives / deliverables

- → Selection of 2-3 main solutions for ecodriving (le podium)
- → Next step proposal for going on deeper with UIC

Inputs:

- Two fact sheets for the topic from Task Force + processes
- Mindmap operations
- overview benchmark

Méthod : 4 steps (10 min each)

- 1. ECODRIVING mind map construction (solutions and company) (paper board)
 - DAS / C-DAS (Training / incentives for drivers impact measuring)
 - Without DAS (training/incentives impact measuring : reduce the speed in the tunnel, ...
 - Optimised timetables
- 2. Rating details for each solutions (5 ou 6 spider)
- 3. Successes and challenges from participants (compléter tableau sur ppt)
- 4. Synthesis (tableau ppt)
- → Selection of 2-3 main solutions for ecodriving (le podium)
- → Method proposal for going on deeper with UIC

Ecodriving deepdive session (60 min)

Who does what ? Succeses and challenges

Who	What	Succeses	Challenges		
SBB	C-DAS Driver tablet	Very good acceptance by freight drivers and traffic managers Consumption Information available at the end of the trip The ponctuality is really improved	Acceptance of the tool : 5 % of the drivers Cultural question « who is the king of the network ? «		
	Reduce the speed in tunnel				
SNCF Voyageurs	DAS / C-DAS in devt	11 000 drivers trained and equiped Assessment system to measure acceptance for the tool	C-DAS Development because of infra data Provide the consumption information ontime at the end of the trip (permit the driver evaluation)		
SNCF Réseau	C-DAS in devt		C-DAS Development		
FS	Energy savings at 16				
NS-PRORAIL	C-DAS	Complete solution in accordance with SFERA 3000 drivers trained and equipped The drivers use the DAS for training ecodriving : use one time in the journey and after drive with the good habit Time tables very well designed in 6 seconds Energy saving monitoring by speed profille during the manual train step (4% saving energy) Bottom-up management C-DAS more as confirmation good eco-driving behaviour			
OBB	C-DAS				
TrafikVerket (sweden)	DAS				
Arlanda Express (Sweden)	DAS				
Infrabel	No DAS – forbideen				
First rail / scott rail (UK)	DAS				
CFL	C-DAS	Complete solution SFERA Thales aramis In time information TMS	Only a part of the network – go on step by step Freight : to be developped Collect all the infra information		
DSB					

Results

Other Sessions

50 HOW CAN WE STAY COMPETITIVE ?!

TECHNIQUES to better STORAGE RENEWABLE ENERGY

Slides

Overview

The operation of trains requires the most energy, and the greatest energy-saving potential is hidden in the areas of rolling stock and operational control. Together we would therefore like to answer the following questions in the workshop:

- a. If you were employed as a consultant for a railway: Which 4-5 measures do you recommend to implement anyway, i.e. are quasi mandatory for all railway companies?
- b. Which two energy-saving ideas would you take home for a more in-depth examination?
- a. What method do you propose that UIC follow to go on with this depthexamination?

We would like to concentrate on measures that can be implemented in existing trains (not together with new procurements, such as a dry transformer in the train). The reason: We want to save energy here and now and as quickly as possible; a procurement usually takes several years.

Agenda

Time	What
9:50 – 10:00 (10')	Welcome and short round of introductions of the participants (maximum 20 participants)
10:00 – 10:15 (15')	Introduction and overview by Christophe Gueudar-Delahaye (SNCF), Johannes Estermann (SBB), Matthias Tuchschmid (SBB), Christian Gerster (Alstom)
10:15 – 10:45 (30')	Rating of the measures
10:45 – 11:00 (15')	Coffee break
11:00 – 11:30 (30')	Synthesis in 2 small group
11:30 – 11:50 (30')	Synthesis in session group
11:50 – 12:20 (30')	Presentation in the big group: What are the 3-5 most important measures?
	Lunch break
14:30 – 15:30 (60')	DeepDive in small groups into the topics, for sure 1: ecostabling @ SBB, 2: ecodriving @ SNCF
15:30 – 16:00 (30')	Preparing final synthesisEach small group prepare 1-2 flipcharts
16:00 – 17:30 (90')	 Presentation of the synthesis in the big group: What are the next steps? How can the UIC taskforce support the implementation of the measures by the members?

Where is the energy consumed in the train?

At 3.5 GWh per year, this long-distance train consumes as much electricity as 875 households.

Energy consumption in railway systems

Source: «Renewable power management into rail grid and storage » UIC workshop Nov 2022, Dr. Zhongbei Tian, University of Liverpool

Energy consumption of trains - indicative

Energy efficient Rolling Stock

- Lightweight trains
- Aerodynamics & running resistance
- Thermal insulation
- Power supply and traction efficiency
- Efficient HVAC (Cooling, heating)
- Energy reduced parking / stabling modes

Energy efficient infrastructure

- **Bidirectional substations** (DC networks)
- Local energy storage
- (Rail facilities heating, lighting,...)

Energy efficient operation

- Time table & train size
- EcoDriving: connected DAS/Cruise control
- Predictive energy opt. Stabling & Parking
- Comfort control: HVAC, lighting, doors etc.

Date

Ways to save energy

a) Buy the best and most energy efficient rolling stockb) Improve existing rolling stock

- I. with new components, e.g. LED as lighting source
- I. with new software, e.g. ecostabling
- c) Stabling: Improve the way to use existing rolling stock, e.g ecostabling organisation
- d) Driving: Improve the driving patterns of the trains, e.g. ecodriving information to train drivers

Which are the most important measures?

Rating the energy efficiency measures.

Operation - Solutions Mind map Improve existing rolling stock with new software

Operation - Solutions Mind map Improve existing rolling stock with new components

25

Operation - Solutions Mind map Organisational measures / processes for driving and stabling modes

Rated measures in Operation & Rollingstock

Topic	Introduction	Cost in Mio. EUR	Time	Compl	Benefit
1. EcoDriving training for drivers	Christophe	0.1	8 months	Low	2%
2. DAS / cDAS	Christian	0.8	2.5 years	High	6%
3. «EcoStabling»-Mode by human organisation	Christophe	0.01	1 year	Medium	1.8%
4. «Ecostabling mode» in HVAC (automatic)	Johannes	0.24	1 year	Medium	1.8%
5. Optimise traction converter software	Christian	0.8	2 years	High	4%
6. Occupancy-dependant fresh air intake	Matthias	0.1	1.5 years	Medium	0.6%
7. HVAC heat pumps	Johannes	0.4	2years	High	0.7% (0.1% – 10%)
8. Optimize Traffic management	Jan	1.2	3 years	High	4%

Remark: All values are an indication by the partcipants, typically with a range of +/-50%

DeepDive EcoStabling

DeepDive «EcoStabling»

Time	What
14.30 – 14:35 (5')	Welcome and goal of DeepDive
14:35 – 14:40 (5')	1. Estimate the energy saving potential for your fleet and create a BusinessCase
14:40 – 14:55 (15')	 2. Implementation options: a) operational / manual b) Controlled by TCMS (on vehicle) c) controlled by timetable (from remote, connecticity to server) What is your experiences? What are advantages and disadvantages of these options?
14:55 – 15:10 (15')	 3. Example of implementation on a vehicle Example 1: EW 4 Example 2: FBB f ür EW4 Example 3: automatic switch off and on of whole trains
15:10 – 15:15 (5')	4. Operational test and verification using data loggers, verification of BusinessCase
15:15 – 15:30 (15')	5. Discussion and exchange: Success and challenges in implementation
15:30 – 15.50 (20')	What have we learned? How can UIC support the implementation of the measures by the members?

HLK-Messdaten EW IV vom 11.05.2011 bis 21.05.2011.

Potential for energy saving of ecostabling

Nicht festgelegt										C1 - Öffentlich		C2 - Intern	C3 - Vert	
	A	В	С	D	E	F	G	Н		J	K	L	M	N
Ene	rgy sa	ving po	otential with e	ecostabling	9									
operat	ting hou	rs with pa	assengers	7.8	[h/d]			specific ene	rgy capacity	of air c _{p,l}	1.005	[kJ/(kg·K)]		
require	ed hour	s for shun	ting and prepara	1 2.5	[h/d]			density of air		1.293	[kg/m ³]			
Sum 10.3		10.3	[h/d]			average air intakte by Tout <-5°C		1106	[m ³ /h]	see specif	see specification of HV			
factor of operation 43		43%				leaking rate	by Tout<5°C		106	[m ³ /h]	estimation	: 10%		
factor	of resei	ve		9%				Mittl. Aussenluftanteil bei T>-5°C		1'106	[m ³ /h]	see specif	ication of H	
faktor	Schlum	nmern		48%				Mittl. Lecka	ge bei T>5°C		106	[m ³ /h]	estimation	: 10%
								coefficient o	f performance	for cooling	(1.7			
	te	emperat	ure condition	IS	transmission				convection					
tout		hours	t _{in} normal	t _{in} ecostablin	k-Wert	k-Wert	Am	per coach	per coach	difference	V _{I,e}	per coach	per coach	difference
					v = 0 km/h	v = ⊗ km/h		normal	ecostabling			normal	ecostabling	
[°	C]	[h]	[°C]	[°C]	[W/m ² K]	[W/m ² K]	[m ²]	[kWh]	[kWh]	[kWh]	[m ³]	[kWh]	[kWh]	[kWh]
-15		20	22.0	17.0	1.8	2.1	268	172	148	23	1'106	142	123	19
-10		70	22.0	15.0	1.8	2.1	268	520	406	114	1'106	430	336	94
-4		290	22.0	14.0	1.8	2.1	268	1'749	1'211	538	1'106	1'447	1'002	445
0		730	22.0	12.0	1.8	2.1	268	3'725	2'032	1'693	1'106	3'083	1'682	1'401
5		1'670	22.0	11.0	1.8	2.1	268	6'585	2'324	4'261	1'106	5'450	1'923	3'526
10		1'850	22.0	10.0	1.8	2.1	268	5'149	0	5'149	1'106	4'262	0	4'262
15		1'680	22.0	15.0	1.8	2.1	268	2'728	0	2'728	1'106	2'257	0	2'257
20		1'190	22.0	20.0	1.8	2.1	268	552	0	552	1'106	457	0	457
22		550	22.4	22.0	1.8	2.1	268	51	0	51	1'106	42	0	42
24		320	23.4	24.0	1.8	2.1	268	26	0	26	1'106	22	0	22
26		170	23.8	26.0	1.8	2.1	268	51	0	51	1'106	42	0	42
28		100	24.5	28.0	1.8	2.1	268	48	0	48	1'106	40	0	40
30		70	25.5	30.0	1.8	2.1	268	43	0	43	1'106	36	0	36
35		50	30.0	35.0	1.8	2.1	268	34	0	34	1'106	28	0	28
			Aufheizen & Unsicherheit (Annahme 20%) 1'224 -1'224				Aufheizen &	Unsicherheit	t 1'013					
Sum		8'760						21'433	7'346	14'087		17'737	6'079	12'672
energ	yconsu	nption wit	thout ecostabling	9			[MVVh]	39.2						
energ	yconsu	nption wit	th ecostabling				IVIVVNJ	13.4						
energ	jy savir	ng potent	tial with ecosta	bling [MWh]			IMWNJ	25.7						
Nehe	nrechn		enluftvolumen	strom & Obe	rfläche						Finsparung	für desamt	e FW IV-Flot	te
Fzg -Tvp Personen Aussenluft Aussenluft Fahrzeuge				Oberfläche					Anzahl Fahr	Anzahl Fahrzeuge Einsparung Flotte				
9-1	<u>л</u> е		tom < -5°C	t _{om} ≥ -5°C	. annzougo	C Somuono					33/ 0		8.6	[GWb]
		[Anzahl]	[m ³ /h]	[m ³ /h]	[Stck]	[m ²]					554		0.0	[Sviil
<u> </u>		[wizanij	[m m]	[m m]	[oton.]	1 100 1								

Physical model in Excel
Required are some basic parameters

You can download the file from the UIC-Extranet.

Three different approaches for activating the «ecostabling» mode

a) operationally / manually
b) controlled by coach (automatically, by TCMS)
c) controlled by timetable (from remote, connecticity to server)

- What is turned off when?
- Which signals are used?
- Who and when is the train prepared for operation again?

Implementation of new operational state «Ecostabling mode»

[Light = true] OR [v< 5 km/h = false]

Normal mode

ELECONTROL: MAS

....

[Light = false] AND [v<5km/h=true] for more than 5 min

Ecostabling mode

Selectro

Selectro

Switch remotely on and off the light, controlled by the timetable

а штшп

11111 11111

ground

277 770

0

(a)

