Technical initiatives for reducing Railway Noise
9:00 – 9:15 Introduction and Welcome Remarks
 Christian Chavanel UIC, Rail System Department Director

9:15 – 10:30 Round Table
 Moderated by Christian Chavanel UIC Rail System Department Director
 ➢ Europe's Rail JU. Judit Sandor, program manager for CCA
 ➢ TTI Sector. David Villalmanzo, ADIF, chair of the sector
 ➢ UIC Noise & Vibration Sector. Jakob Oertli, SBB, chair of the sector
 ➢ Infrastructure Sector. Franco Iacobini, RFI, chair of the sector

10:30 – 11:00 Coffee Break

11:00 – 11:45 UIC Noise Initiatives
 AERONOISE. Gennaro SICA, HS2 Aeronoise technical leader
 LOWNOISEPAD. Eduard VERHELST, SD&M, consultant/General Manager

11:45 – 12:30 Acoustic Rail Roughness
 Roughness last findings. Survey results. Dimitros Kostovasilis, WSP
 Acoustic Rail Roughness Working Group. Emilie FREUD, SBB

12:30 – 12:45 Closing Remarks
 David Villalmanzo, UIC TTI Sector

12:45 – 13:00 Sponsors Booth @ Room Stephenson

With thanks to our Gold sponsor
SEMPERIT
Your worldwide partner in customized railway superstructure solutions

With thanks to our Silver sponsor
Fimor

#UICRailwayNoiseDays
#MoreTrains
Christian Chavanel

UIC Rail System Department Director
Round Table

Moderator

Christian Chavanel
UIC Rail System Department Director

Judit Sandor
Europe’s Rail JU, Program Manager for CAA

David Villalmanzo
ADIF, Chair of the TTI Sector

Jakob Oertli
SBB, Chair of the Noise and Vibration Sector

Franco Iacobini
RFI, Chair of the Infrastructure Sector
30’ Coffee Break
9:00 – 9:15 Introduction and Welcome Remarks
Christian Chavanel UIC, Rail System Department Director

9:15 – 10:30 Round Table
Moderated by Christian Chavanel UIC Rail System Department Director
➢ Europe’s Rail JU. Judit Sandor, program manager for CCA
➢ TTI Sector. David Villalmanzo, ADIF, chair of the sector
➢ UIC Noise & Vibration Sector. Jakob Oertli, SBB, chair of the sector
➢ Infrastructure Sector. Franco Iacobini, RFI, chair of the sector

10:30 – 11:00 Coffee Break

11:00 – 11:45 UIC Noise Initiatives
AERONOISE. Baldrik FAURE, SNCF Aeronoise expert
LOWNOISEPAD. Eduard VERHELST, SD&M, consultant/General Manager

11:45 – 12:30 Acoustic Rail Roughness
Roughness last findings. Survey results. Dimitros Kostovasili, WSP
Acoustic Rail Roughness Working Group. Emilie FREUD, SBB

12:30 – 12:45 Closing Remarks
David Villalmanzo, UIC TTI Sector

12:45 – 13:00 Sponsors Booth @ Room Stephenson

With thanks to our Gold sponsor
SEMPERIT
Your worldwide partner in customized railway superstructure solutions

With thanks to our Silver sponsor
Fimor

#UICRailwayNoiseDays
#MoreTrains
UIC Noise Initiatives
AERONOISE

Aeronoise Team

UIC Noise Days, Paris, 01 March 2023
What is Aeronoise?
WP1 Deliverable
Outcome WP1
Progress on WP2
 • Approach & Aims
 • Metrics
 • Optimization Measurement Set Up
 • Rolling Noise Estimation
Next Steps
What is Aeronoise?

- Aeronoise is a UIC project which aims to **develop a measurement and analysis protocol for the characterisation of aerodynamic sources of high speed train**
- Participants: ADIF, BANENOR, HS2, SNCF, SZ & TRAFIKVERKET
 - Started in February 2020 (but delayed by the Pandemic)
- Organised in 3 WPs
 - WP1 – Benchmark
 - WP2 – Definition of Protocol & Analysis
 - WP3 – Demonstrator
- Technical Partners WP1&WP2: SENER + ISVR Consulting
- Deliver a new IRS: Measurement and analysis systems to characterise the aerodynamic noise of HS trains
- Opportunity to improve ISO/CEN activities, TSI, Noise prediction methods for High Speed Traffic
WP1 Deliverable

The deliverable includes
• Description of source mechanisms
• Description of mitigation
 • Train
 • Track
 • Noise Barrier
• Rating of aeroacoustic sources based on array measurements
• Benchmark
 • Regulations
 • Measurements and Analysis

Outcome WP1 – Benchmark Regulations

Differences in existing regulations
- **Train Speed**
- **Noise indicator**
- **Measurement location**

→ No assessment of the type of source or source location

<table>
<thead>
<tr>
<th>Location</th>
<th>Reference</th>
<th>Applicable Rolling Stock</th>
<th>Metric</th>
<th>Train Speed (km/h)</th>
<th>Maximum Allowable Sound Pressure, dB(A)</th>
<th>Elevation (m)</th>
<th>Distance from centerline (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>40 CFR 201.12</td>
<td>Locomotive</td>
<td>(L_{\text{max}}) (fast)</td>
<td>All</td>
<td>90</td>
<td>1.2 (top of rail)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>40 CFR 201.13</td>
<td>Rail Cars</td>
<td>(L_{\text{max}}) (fast)</td>
<td>>45</td>
<td>93</td>
<td>1.2 (top of rail)</td>
<td>30</td>
</tr>
<tr>
<td>EU & UK</td>
<td>TSI Noise 2014 NTNS NOI 2021</td>
<td>Locomotive</td>
<td>(L_{\text{P,eq,LP}})</td>
<td>80 – 250</td>
<td>84 - 99</td>
<td>1.2 (top of rail)</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMUs</td>
<td>(L_{\text{P,eq,LP}})</td>
<td>80 – 250</td>
<td>80 – 95</td>
<td>1.2 (top of rail)</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMUs</td>
<td>(L_{\text{P,eq,LP}})</td>
<td>80 – 250</td>
<td>81 - 96</td>
<td>1.2 (top of rail)</td>
<td>7.5</td>
</tr>
<tr>
<td>China</td>
<td>GB 12525-90</td>
<td>All Rolling Stock</td>
<td>(L_{A})</td>
<td>all</td>
<td>70</td>
<td>1.2 (top of rail)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(L_{C})</td>
<td>all</td>
<td>60</td>
<td>1.2 (top of rail)</td>
<td>30</td>
</tr>
<tr>
<td>Japan</td>
<td>Environmental Law 91 of 1993</td>
<td>High Speed Rail</td>
<td>(L_{\text{A}})</td>
<td>all</td>
<td>75*</td>
<td>1.2 (above ground)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Rail</td>
<td>(L_{\text{C}})</td>
<td>all</td>
<td>60*</td>
<td>1.2 (above ground)</td>
<td>25</td>
</tr>
</tbody>
</table>

*Sound pressure level at receiver allows use of barrier and other noise path attenuation methods.
Outcome WP1

Benchmark Measurement Protocol

Rating existing measurements & analysis protocols

<table>
<thead>
<tr>
<th>Evaluation metrics for AERONOISE</th>
<th>ISO 3095:2013</th>
<th>MICROPHONE ARRAYS</th>
<th>HS2/SENER LAS INVIERNAS</th>
<th>INTENSITY / PU PROBES</th>
<th>HYBRID TEST-SIMULATION</th>
<th>ATPA, PBA, VTN & TWINS (AS UNIQUE TOOL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General applicability of method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOT APPLICABLE TO AERONOISE PROJECT AS A UNIQUE TOOL</td>
</tr>
<tr>
<td>Simplicity in execution and post-process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of conventional, proven sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy of results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency on copyright protected resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feasibility as add-on to ISO 3095</td>
<td>NOT APPLICABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HS2/Sener already fulfils most of the Aeronoise requirements
Main recommendations

- Catenary pole for measuring aerodynamic noise
- Numerical/experimental hybrid method to separate rolling noise from aerodynamic noise
- Triplets of microphones are an interesting approach but requires more work. Initial findings presented at IWRN

<table>
<thead>
<tr>
<th>Evaluation metric for AERONoise</th>
<th>Catenary Pole with standard MIC & hybrid prediction/measurement approach</th>
<th>Catenary Pole with single TripLetS & hybrid prediction/measurement approach</th>
<th>Catenary Pole with multiple TripLetS & hybrid prediction/measurement approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>General applicability of method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplicity in execution and post-processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of conventional, proven sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy of results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency on copyright protected resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feasibility as add-on to ISO 3095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Submission No. 37

Use of heterogeneous microphone triplets for simplified noise apportionment in pass-by measurements

Jesús Sotó1, Pierre Burgener2, Mercedes Gutiérrez Fernández2
1. SENER Ingeniería y Sistemas, Noise and Vibration Technical Office,
2. Cercanías, Siscat S.A., Centennale del Valis, 08290 Barcelona, Spain
3. IUR INTERNATIONAL UNION OF RAILWAYS, Head of Asset Management, Infrastructure and Infrarail with Rolling Stock, 56 rue Jean Rey – 75013 Paris
Work Package 2

Objective:
Define a measurement and analysis protocol for the characterisation of aerodynamic noise sources

Key elements of the protocol:
• General approach
• Noise indicators
• Measurement setup
• Data processing
 (Rolling Noise Separation using Hybrid Method)
Work Package 2 – Approach & Aims

Approach similar to N&V assessment manual of the Federal Transit Administration of the USA:
• General assessment - based on a few positions in catenary pole + references at 7.5m / 25m
• Detailed assessment - include more positions, accelerometers, optical sensors, etc

Measurement Set Up
• Adaptable to any catenary pole
• Minimum operational disruption

Define “train classes” with respect to noise emissions as with dwellings or noise barriers?
Work Package 2 – Metrics

• Use common metrics
 • Focus at least on $L_{A,eq,Tp}$ (pass-by)
 • L_{max}

• Different metrics depending on the test grade
 • Global linear sound power for general assessment,
 • Sound power + L_{max} + spectral data for detailed assessment.

• Metrics for additional microphones still in development
Work Package 2 – Test set up

Test setup investigated through modelling and optimisation algorithm for the identification of optimal distance between track and catenary pole and number of sensors.

- A minimum of 5 microphones through the catenary pole are needed for separation
- It is not possible to achieve separation between rolling noise and low aerodynamic noise through microphones only
- Consideration of additional sensors or modelling to support separation

Due to the positions of the noise sources and geometry of the train, acoustic effects need to be considered: screening, horizontal and vertical diffraction, specific absorption of ballast, diffusion coefficient, reflection number, etc.

A specific ODEON model was created with a given train geometry and track. 5 linear noise sources were introduced as initial approach. Line of receivers on a specific vertical pole, separated by 10 cm, were introduced to compute the relationship between noise sources and near-field values.
Rolling noise identification is important for source separation

- **General Assessment**
 - Extrapolation rolling noise using $30\log(V)$ equation from lower speeds pass by measurements

- **Detailed Assessment**
 - Compatibility with the current state of the art
 - TWINS Based Methods
 - PBA Approach
 - Aeronoise is also working on a novel rolling noise separation method (Roughness based method)
Next steps

- WP2 Report under review
 ➔ To be completed by April 2023

- Preparation of WP3 Tender Documentation
 ➔ WP3 Tender Launch by May 2023

- Identification of infrastructure and rolling stock for experimental validation

- WP3 expected to be completed Beginning 2024
 (subject to measurements)
Stay in touch with UIC:

www.uic.org

#UICrail

Thank you for your attention.
LOW-COST NOISE CONTROL BY OPTIMISED RAIL PAD

Eduard Verhelst
SD&M Structural Dynamics & Monitoring

March 1, 2023
• How LOWNOISEPAD was created
• Goal
• Project members
• Some statistics
• Planning
• Applied methodologies (WP3, WP5, WP6)
• Test site selection (WP4)
• Measurements (WP5)
• Software Tool (WP6)
• Results (WP6)
• Conclusions
Potential for Railpad optimisation was investigated in detail at INFRABEL in 2013 after comparing noise emission on several rail pads within the same stiffness range but different contact surface with the rail, resulting in completely different TDR and Noise emission.
Goal of LOWNOISEPAD

To be **PRAGMATIC**, solution-based on results of the terrain

No computer-based calculation but validation, validation, validation by measurements (including training to perform measurements)

Same measurement set-up approach and data processing for all Project Partners

Access to a wide variation of rolling stock, speeds, rail fastener systems (12 Infra managers) to assess rail pad change on noise emission

Not only **Acoustical engineers** but also **Track engineering** is involved (networking inside the companies)

Close collaboration with the **UIC Train Track Interaction Sector**
12 European Railway Infrastructure Managers

- SNCF
- Network Rail
- Ferrovie Italiane
- Infraestruturas de Portugal
- SPRÁVA ŽELEZNICE
- INFR/ABEL
- DB
- SBB CFF FFS
- BANE NOR
- TRAFIKVERKET
- ÖBB
- Infrastruktur

SD&M
- Structural Dynamics & Monitoring
- Consulting & research for railway noise and vibration reduction

- N&V group

- 18 Optimized pads at 10 test sites
- 12 reference pads at 12 test sites
- 30 pads

- 1 Optimized pad
- 2 Optimized pads
- 3 Optimized pads

- 5 Optimized pads
- 2 Optimized pads
- 1 Optimized pad
Some statistics

Test sites in 12 countries, at the end of the project:
A total of 30 pads to be compared
✓ 18 optimized pads at 10 test sites
✓ 12 reference pads at 12 test sites

Today data available from 8 countries
✓ Wait for data from final 4 countries
✓ 3 optimized pads
✓ 4 reference pads

Optimized pads installed from 4 different suppliers:
✓ Semperit, Vossloh, Calenberg, Getzner,...
✓ Goal: High TDR, as low as possible stiffness
✓ All approved by, and customized design for project partners
✓ Various Railpad stiffnesses kSP: 60 – 230 kN/mm
 ✓ Frequency dependent stiffness and damping
 ✓ Some have FEM optimized design for high damping of rail resonances
LOWNOISEPAD planning

Updated planning

WP	Task Description	M-2	M-1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24				
WP0	Preparational meetings (One2One)	UIC	UIC																											
WP1	Roadbook: procedures for all WP			UIC	UIC																									
WP2	Track database			IM	IM	IM																								
WP3	Select railpads to be tested, and/or			IM	IM	IM																								
WP3	Railpad optimisation							IM																						
WP4	Site selection			IM	IM																									
WP5	Railpad installation	IM																												
WP5	Measurements -> dBase	IM																												
WP2->5	support by SD&M	UIC	SD&M (>70 one2one and > 10 with all SPOC teams meetings)																											
WP6	dissemination, data analysis & Software tool	UIC	SD&M																											
WP2: Track database as a start: what is available

WP6: TDR Single value parameter:
 Based on TDR sum in specific frequency range
 Taken into account the A weighting and ISO 3095 limit

WP3 and WP6: Software tool (under construction)
 Railpad selection and TD influence
 Iterate Track contribution from measured Lp at 2 sites

\[L_{p,\text{measured1}} @ \text{TDR1} \quad ; \quad L_p = L_{Aeq_{\text{tp}}(f)} \quad ; \quad 100\text{Hz}<f<5\text{kHz} \]

\[L_{p,\text{measured2}} @ \text{TDR2} \]

\[L_{p,\text{estimated2n}@\text{TDR2n}} ?? \]

\[L_p = L_p,\text{track} + L_p,\text{veh} \quad \text{and} \quad L_p,\text{track}=L_p + \text{sep},\text{track} \]
Test site selection
Test site selection

Norms

EN 15461+A1-2010-2: Characterisation of the dynamic properties of track sections for passby noise measurements

EN 15610 – 2019: Railway applications - Acoustics - Rail and wheel roughness measurement related to noise generation.

Acoustical considerations
• Availability of recent TDR measurements at known rail temperature
• Availability of recent Rail roughness measurements (grinding planning, time delay after last grinding...)
• Quality of the rail running band (no welding, joints, switches, rail discontinuities, squats...)
• Ballast cross section (geometry, ballast shoulder height to avoid diffraction differences)
• Similar flat or sloped free field (no change in “cross-section” nor obstacles within 22m around microphones)

Practical considerations
• Type of track, should be the standard track without curves in a good normal condition (age, maintenance: tamping, grinding)
• Rolling stock variation on the selected line (interest in passenger, freight, or both)
• Speed of the section (should be constant, no deceleration or acceleration zone due to signaling due to signaling or nearby station)
• Physical access to the test site (roads, access for installation, protected for public access,..)
• Planning and time required to install both railpads and accelerometers in the track
Measurements (WP5)

EQUIPMENT

• Each component of the acoustic instrumentation system shall meet the requirements for a Class 1 instrument specified in IEC 61672-1:2002.
• The compliance of the calibrator with the requirements of IEC 60942:2003 shall be verified at least once a year.
• Microphones with free field characteristics shall be used.
• ISO3095 requirements for instrumentation.

ADDITIONALLY

• use exactly the same types and sensitivity of accelerometers and microphones at both sections, in order not to introduce already deviations at sensor level.
• sensor fixation on rails, wind protection on the microphone should not be different.
• use one, minimum 4 channel, data acquisition system that captures all signals simultaneously at the same sample rate. (min. 20 kHz, but the higher, the better)
• calibrate the microphones before, during and after the measurement campaign, and record temperature of rails railpad during the whole campaign
• calibration raw data to be saved.
Today measurement data available from:

- SBB CFF FFS
- DB
- INFRABEL
- OBB
- Infraestruturas de Portugal
- TRAFIKVERKET
- Bane Nor
- Network Rail
- SNCF
- Správa železnic
- Ferrovie Italiane
- ProRail

Data OK, but no railpad change possible

Data to be expected soon, no railpad change possible

Data to be expected soon
Results

• Main document with all measurement data, processing procedures
• Processing of more than thousand train pass-by
 • Various speeds, rolling stock, temperatures
• Achieved noise reductions at the PP for combinations of 30 different railpads (60-1000kN/mm)
• Track Decay rates at all the sites

IRS: Track noise measurement guideline - A methodology to measure and compare the noise emitted from different track components

• lownoisepad Software tool (WP6) to display and analyze all measurement data and processing's
 • dBase Pass-by and TDR EN15641 / CEN/TR 16891:2016 with all parameters in 1/3 octave dB/m and dB(A)
 • Estimating of noise reduction (2 methodologies)
Results WP6: Software tool

- Runs on Windows systems
 - Password protected
 - Easy installation and use, self-explaining menu’s
 - Can be extended to visualize other mitigation measures
- 2 main functions
 - **COMPARE** and Visualization of measurements (Pass by and TDR)
 - Possibility to compare trains/tracks between different countries in overlay
 - **CALCULATE** emission changes by “virtually” replace a rail pad by one that was tested in other country
 - Using 2 different methodologies (in development)
Results WP6: Software tool
Results

- Noise reductions for 7 optimized pads **OPTI (between 60-230kN/mm)** referenced to:
 - SOFT L ($< 200kN/mm$) pads
 - STIFF H ($>500kN/mm$) pads
- Averaged for:
 - various speeds (80-220kph),
 - rolling stock (passenger, freight),
 - temperature (-11°C – +22°C)

![Average Noise reduction in dB(A) on pass-by for whole family of trains](chart_url)
Conclusions

• Convening acoustic and track engineers nationally and internationally to tackle the same challenge

• Carried out a pragmatic International Project, developed within UIC and supported by 12 EU Rail infrastructure managers

• Motivates, supports and enables European rail infrastructure managers to install optimised rail pads and conduct measurements on tracks under operation conditions

• Develop a common understanding and generalised approach through the procedure for installation, measurements, and data-processing: starting from raw unfiltered data as captured, applying ISO3095, EN15641 and CEN/TR 16891:2016

• Seeks a low-cost solution (< 0.5€ extra /m Track), without adding components to the track that requires extra maintenance, instead of extremely expensive solutions as noise barriers (>2000€ /m Track) and rail dampers (> 200€ /m Track)

Significant noise reduction by installing optimised pads, both for SOFT as STIFF (EVA) pad as reference
Eduard Verhelst, Ing, entered INFRABEL, the Belgian Railway Infra manager in 2009 after a career of more than 20 years at Noise & Vibration consulting companies: Dynamic Engineering (Modal analysis/ODS,FEM) and D2Sintl (N&V measurements) in Belgium.

At INFRABEL, he designed and installed way-side monitoring stations for static and dynamic wheel/rail forces combined with N&V emission and individual wheel roughness, and train-based track quality monitoring systems, finally resulting in 15 operational double track monitoring stations and 4 operational measurement trains. These monitor the Belgium Railway track quality day-by-day.

At INFRABEL he received a full training as track-engineer by ir. Jan Mys and could acoustically optimize rail grinding activities and rail pads design and properties.

After proposing the LOWNOISEPAD project for UIC, he works now as consultant for UIC to manage this project for 12 European Infra managers, in parallel with consulting activities for various railway product manufactures and Railway Infra managers.
Stay in touch with UIC: www.uic.org

#UICrail

Thank you for your attention.
9:00 – 9:15 Introduction and Welcome Remarks
Christian Chavanel UIC, Rail System Department Director

9:15 – 10:30 Round Table
Moderated by Christian Chavanel UIC Rail System Department Director
- Europe’s Rail JU, Judit Sandor, program manager for CCA
- TTI Sector. David Villalmanzo, ADIF, chair of the sector
- UIC Noise & Vibration Sector. Jakob Oertli, SBB, chair of the sector
- Infrastructure Sector. Franco Iacobini, RFI, chair of the sector

10:30 – 11:00 Coffee Break

11:00 – 11:45 UIC Noise Initiatives
AERONOISE. Gennaro SICA, HS2 Aeronoise technical leader
LOWNOISEPAD. Eduard VERHELST, SD&M, consultant/General Manager

11:45 – 12:30 Acoustic Rail Roughness
Roughness last findings. Survey results. Dimitros Kostovasilis, WSP
Acoustic Rail Roughness Working Group. Emilie FREUD, SBB

12:30 – 12:45 Closing Remarks
David Villalmanzo, UIC TTI Sector

12:45 – 13:00 Sponsors Booth @ Room Stephenson
Acoustic Rail Roughness
ACOUSTIC ROUGHNESS AND MONITORING STUDY

Dimitrios Kostovasilis
WSP UK Ltd

UIC Noise Days, Paris, 01 March 2023
Noise generation mechanism

Roughness present at the wheel/rail interface
Affects the excitation forces of train and track
Dynamic excitation of wheel and track structures generates noise

Similar for ground-borne noise and vibration
Wavelengths of interest

Excitation frequency for noise and vibration proportional to wavelength and speed \(f = \frac{v}{\lambda} \)

Different sources of unevenness (wheel, rail and track) at different wavelengths

Rolling Noise

<table>
<thead>
<tr>
<th>Min</th>
<th>Speed (km/h)</th>
<th>Frequency (Hz)</th>
<th>Wavelength (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>20</td>
<td>0.006 ~ 0.01</td>
</tr>
<tr>
<td>Max</td>
<td>360</td>
<td>10000</td>
<td>5</td>
</tr>
</tbody>
</table>

GBNV

<table>
<thead>
<tr>
<th>Min</th>
<th>Speed (km/h)</th>
<th>Frequency (Hz)</th>
<th>Wavelength (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>1</td>
<td>0.222</td>
</tr>
<tr>
<td>Max</td>
<td>360</td>
<td>250</td>
<td>100</td>
</tr>
</tbody>
</table>

Speed shifts freq.

\(f = \frac{v}{\lambda} \)
Wavelengths of interest

Rail head maintenance activities are efficient at controlling roughness at $30 \text{ mm} < \lambda < 250 \text{ mm}$.
Client’s Commitments and implication for roughness/maintenance

Noise Commitment
• Apply to operation and maintenance,
• Degradation of wheel/rail interface over the maintenance cycle, and
• Monitoring noise during operations

Noise and vibration monitoring framework during operation
• Collect wide range of N&V related data
 • Train, track, noise fence barrier, etc
 • Also *how systems interact* (e.g. track with rolling stock)
 • Use to monitor the operational N&V performance

We are as interested in what makes the roughness what it is after 12 months as we are straight after treatment.
Acoustic Roughness and Monitoring Survey

• We put together an Acoustics Roughness and Monitoring Survey.
• Seven open questions in order to explore the following areas
 • Key factor for track maintenance strategy
 • Acoustics Performance criteria for rail head maintenance
 • Noise Management Issue
 • Monitoring & Management of Acoustics Roughness
• One question on sharing more detailed information / further collaboration
Engagement via UIC

• Reviewed historical information from UIC on roughness/maintenance provided by the Noise Expert Group
 • Relevant but not comprehensive
 • Little evidence on the actual maintenance criteria driving the strategy and information on specific maintenance treatments
 • Little evidence between maintenance strategy and benefit in terms of noise reduction

• Engagement with UIC Noise Expert Group (NEG) with the survey
 • Limited response/engagement (2 responses)
 • Noise might not be the main driver in maintaining the rail head?
 • If so, what are the main drivers?

• Involvement UIC Track Expert Group (TEG) members in the survey
 • Better engagement (5 responses)
 • The topic is heavily related to track maintenance and operation.
 • Learning from expertise from key infrastructure managers around the world

 Enable our track maintenance strategy to be informed by best practice shared by UIC experts
Respondents

- Two responses from consultancy companies that are not involved with maintenance activities
- Nine out of 11 participants were involved with maintenance activities on high-speed (240 km/h and above) railways
Q1: What are the key factors that influence your track maintenance (e.g. grinding) strategy?

- Safety: 91%
- Railhead management: 91%
- Noise: 27%
Q2: When performing rail head maintenance, do you aim to achieve certain acoustic performance criteria?

Original responses

- Yes - 67%
- No - 33%

Actual acoustic performance criteria

- Yes - 33%
- No - 67%
Q3: Does the condition of your railway cause you noise management issues?

- Yes - 82%
- No - 18%

Solution:
- Regular conditioning
- Annual maintenance

Typical issues:
- Curving noise
- Squeal
- Rolling noise
- S&C noise and vibration
- Vibration
Q4: Do you conduct regular monitoring of acoustic roughness levels on your network?

Yes - 33%
No - 67%

Q5: Do you have information on specific maintenance treatments and evidence of their effect on acoustic roughness?

Yes - 40%
No - 60%
Q6: Is your maintenance strategy preventive, corrective, or both?

Q7: In terms of acoustic roughness management, do you take preventive or corrective steps to address it?
What are the main drivers for rail head maintenance?

• “I got 99 problems, but noise ain’t one”?
• What are the main drivers then?
• Safety & railhead management
• Noise reduction is a bi-product … or is it?

<table>
<thead>
<tr>
<th>Feasible causes to railway systems</th>
<th>Operational Risk</th>
<th>Safety Risk</th>
<th>Priority Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track damages (cracked/broken components)</td>
<td>H</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>Train damages (coupler failure, loosen components)</td>
<td>H</td>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>Plastic deformation/lipping/tight gauge/source to regenerate other rail defects</td>
<td>M</td>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>Signal equipment failure from vibrations</td>
<td>M</td>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>Ground-borne vibrations</td>
<td>M</td>
<td>M</td>
<td>5</td>
</tr>
<tr>
<td>Poor ride quality</td>
<td>M</td>
<td>L</td>
<td>6</td>
</tr>
<tr>
<td>Environmental noise</td>
<td>M</td>
<td>L</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2. Track maintenance priority for rail corrugation defects (H: High; M: Medium; L: Low).

Q3: Noise management issues?

Source: Kaewunruen (2018)
Standards and industry specifications
Rail roughness monitoring

![Graph showing frequency vs. wavelength and roughness levels for direct (λ) and indirect (f) monitoring methods.]

- **Direct (λ):**
 - Frequency ranges from 10 Hz to 5000 Hz.
 - Wavelength ranges from 10 m to 0.01 m.
 - Roughness levels from -20 dB re 1μm to 20 dB re 1μm.

- **Indirect (f):**
 - Frequency ranges from 10 Hz to 5000 Hz.
 - Wavelength ranges from 10 m to 0.01 m.
 - Roughness levels from -20 dB re 1μm to 20 dB re 1μm.

Legend:
- Straight edge
- Trolley
- Vehicle mounted
- Axle box accelerometers
- Rail near-field microphone
- Under coach microphone
- Wheel near-field microphone
What is the optimum track maintenance?

- Unavoidably driven by safety/rail life longevity needs
- Preventive rail grinding (yearly?) better than corrective rail head treatment
 - Optimise grinding/treatment parameters for acoustics (quality index?)
 - How is this translated to the maintainer 'language'?
- Parallel acoustic maintenance to reduce N&V (not additional)
- Oscillating and high-speed grinding can more-readily deliver low acoustic roughness
- A ‘system approach’: rail & wheel roughness
- Active monitoring: tight control on acoustic roughness levels (guides treatment)
- Adaptive maintenance regime – monitor and adjust
- Understand the acoustic roughness growth

Evidence shows that a carefully controlled rail head treatment can have good acoustic performance – *Get it right first time!*
Conclusions

- Different roughness generation mechanisms exist that make maintenance operations site-specific;
- There is no widely accepted model for the prediction of roughness growth;
- There is no widely adopted rail head maintenance strategy for acoustics;
- Acoustic track roughness control could add constraints to rail head maintenance operations; and
- Information on the effects of specific rail head treatment activities is sparse, typically confidential to infrastructure maintainers.

The contribution of UIC has been pivotal to help identify the current gaps in the state of the art and

Further collaboration is required within experts of acoustic rail roughness: more work is required on the assessment of the acoustic quality of railhead treatments and best practice for the measurement of acoustic rail roughness, in order to inform the best practice for maintaining a quiet railway in a cost effective way!
Stay in touch with UIC:

www.uic.org

#UICrail

Thank you for your attention.
ACOUSTIC RAIL ROUGHNESS WORKING GROUP (ARR WG)

UIC Noise and Vibration Sector

Emilie Freud, SBB Infrastructure
UIC Noise Days, Paris
01/03/2023
At common speeds, railway noise is mostly generated through the wheel-rail interaction.

Up to now, the effort to reduce rolling noise has been focused on measures applied to:

- the rolling stock (e.g. composite brake blocks)
- the noise propagation path (e.g. noise barriers, acoustically insulated windows)
- the track (e.g. rail pads, rail dampers)

The current projects on rail roughness address the issue directly at the source: at the wheel-rail contact.
Acoustic Rail Roughness working group (ARR WG)

Creation in May 2022. Platform of exchange on rail roughness topics related to noise.

Around 25 participants from 14 railway companies

Activities:
• Round tables on topics of interest:
 - Overview of the members’ activities
 - Measurement methods
 - etc.
• Participation in workshops
• International projects
Roughness after reprofiling

Why is this an issue?
• **Increase of the rail roughness level** in the first weeks after reprofiling
• The periodicity of the reprofiling patterns can lead to the emergence of **tonal noise**, which can give rise to complaints from the lineside residents.
• Currently, there is no internationally recognized way to assess the acoustic performance of reprofiling.

Existing studies:
• F. Létourneaux et al., *A new metrics to assess the acoustic performance of rail grinding processes* (2016)
• J. Rothhämel et al., *Tonal noises and high-frequency oscillations of rails caused by grinding procedures* (2019)
Monitoring of rail roughness

Why is this necessary?
- Better understanding of the impact of rail roughness on noise and the roughness growth mechanisms
- Optimize noise reduction strategies
- Address complaints from lineside residents
- Detect corrugated sites

The railways use a variety of systems to measure the acoustic rail roughness:

<table>
<thead>
<tr>
<th>Method Type</th>
<th>On-site systems</th>
<th>On-board systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct method</td>
<td>Straight-edge devices</td>
<td>Optical systems</td>
</tr>
<tr>
<td>(measure roughness directly)</td>
<td>EN 15610</td>
<td>No standard</td>
</tr>
<tr>
<td>Indirect method</td>
<td>Accelerometers on the rail</td>
<td>Accelerometers / Microphones on the train</td>
</tr>
<tr>
<td>(calculate roughness from other measured quantities)</td>
<td>EN 16891</td>
<td>No standard</td>
</tr>
</tbody>
</table>
WP 1: Indicator for acoustic quality of reprofiling

Aims
→ Determine a methodology to assess the acoustic performance of reprofiling
→ Facilitate the dialogue between the infrastructure managers and the grinding companies thanks to a unified evaluation of the performance.

What needs to be done ?
• Preliminary study: identify the situations where annoyance due to reprofiling occurs
• Relate the rail roughness to the annoyance through auralization of different situations and hearing tests
• Definition of the indicator and writing of an IRS (International Railway Solution).

WP 2: Technical guidelines for the on-board measurement of the acoustic rail roughness

Aims
→ Facilitate the implementation of on-board measurement systems
→ Provide a common reference to guarantee the comparability of the measurements.

What needs to be done ?
• Documentation of the existing systems
• Use existing knowledge to propose a technical guideline (including measurement device, measurement method, data processing and validation of on-board measurement devices)
• Write an IRS.
The ARR WG in an international context

NOISE

UIC

Noise & Vibration Sector
UIC responsible: Pinar Yilmazer
Convenors: Jakob Oertel, Alf Ekblad
Acoustic rail roughness WG: Emilie Freud

Pinar Yilmazer
Mercedes Gutiérrez

Emilie Freud
Fabien Létourneaux

CEN

WG3: Railway acoustics
Convenor: Fabien Létourneaux

TRACK

UIC

Track expert group
UIC responsible: Mercedes Gutiérrez
Convenor: Bernhard Knoll

Train-track interaction group
UIC responsible: Mercedes Gutiérrez
Convenor: David Villalmanzo Resusta

Contact person to be defined

WG50: Monitoring and treatment of rails
Convenor: Jürgen Reinhardt
Subgroup Reprofiling of rails: Jürgen Reinhardt

CEN / TC256: Railway Applications
Next steps

• UIC Projects – Opt-in process
• Continue round table discussions on the following topics:
 - Roughness behavior and influence factors
 - Indicators
 - Impact of rail grinding on noise
 - Prevention of roughness increase
Stay in touch with UIC:

www.uic.org

#UICrail

Thank you for your attention.
Closing Remarks

David Villalmanzo

UIC TTI Sector Chair
Stay in touch with UIC:

www.uic.org

#UICrail

#UICRailwayNoiseDays #MoreTrains

Thank you for your attention.